全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Recombinant Human Melatonin Receptor MT1 Isolated in Mixed Detergents Shows Pharmacology Similar to That in Mammalian Cell Membranes

DOI: 10.1371/journal.pone.0100616

Full-Text   Cite this paper   Add to My Lib

Abstract:

The human melatonin MT1 receptor—belonging to the large family of G protein-coupled receptors (GPCRs)—plays a key role in circadian rhythm regulation and is notably involved in sleep disorders and depression. Structural and functional information at the molecular level are highly desired for fine characterization of this receptor; however, adequate techniques for isolating soluble MT1 material suitable for biochemical and biophysical studies remain lacking. Here we describe the evaluation of a panel of constructs and host systems for the production of recombinant human MT1 receptors, and the screening of different conditions for their solubilization and purification. Our findings resulted in the establishment of an original strategy using a mixture of Fos14 and CHAPS detergents to extract and purify a recombinant human MT1 from Pichia pastoris membranes. This procedure enabled the recovery of relatively pure, monomeric and ligand-binding active MT1 receptor in the near-milligram range. A comparative study based on extensive ligand-binding characterization highlighted a very close correlation between the pharmacological profiles of MT1 purified from yeast and the same receptor present in mammalian cell membranes. The high quality of the purified MT1 was further confirmed by its ability to activate its cognate Gαi protein partner when reconstituted in lipid discs, thus opening novel paths to investigate this receptor by biochemical and biophysical approaches.

References

[1]  Arendt J (1988) Melatonin. Clin Endocrinol (Oxf) 29: 205–229. doi: 10.1111/j.1365-2265.1988.tb00263.x
[2]  Reiter RJ (1980) The pineal and its hormones in the control of reproduction in mammals. Endocr Rev 1: 109–131. doi: 10.1210/edrv-1-2-109
[3]  Carpentieri A, Diaz de Barboza G, Areco V, Peralta Lopez M, Tolosa de Talamoni N (2012) New perspectives in melatonin uses. Pharmacol Res 65: 437–444. doi: 10.1016/j.phrs.2012.01.003
[4]  Jockers R, Maurice P, Boutin JA, Delagrange P (2008) Melatonin receptors, heterodimerization, signal transduction and binding sites: what's new? Br J Pharmacol 154: 1182–1195. doi: 10.1038/bjp.2008.184
[5]  Boutin JA, Audinot V, Ferry G, Delagrange P (2005) Molecular tools to study melatonin pathways and actions. Trends Pharmacol Sci 26: 412–419. doi: 10.1016/j.tips.2005.06.006
[6]  Nosjean O, Ferro M, Coge F, Beauverger P, Henlin JM, et al. (2000) Identification of the melatonin-binding site MT3 as the quinone reductase 2. J Biol Chem 275: 31311–31317. doi: 10.1074/jbc.m005141200
[7]  Uchiyama M, Hamamura M, Kuwano T, Nishiyama H, Nagata H, et al. (2011) Evaluation of subjective efficacy and safety of ramelteon in Japanese subjects with chronic insomnia. Sleep Med 12: 119–126. doi: 10.1016/j.sleep.2010.08.010
[8]  de Bodinat C, Guardiola-Lemaitre B, Mocaer E, Renard P, Munoz C, et al. (2010) Agomelatine, the first melatonergic antidepressant: discovery, characterization and development. Nat Rev Drug Discov 9: 628–642. doi: 10.1038/nrd3274
[9]  Kobilka BK (1995) Amino and carboxyl terminal modifications to facilitate the production and purification of a G protein-coupled receptor. Anal Biochem 231: 269–271. doi: 10.1006/abio.1995.1533
[10]  Kobilka BK, Deupi X (2007) Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 28: 397–406. doi: 10.1016/j.tips.2007.06.003
[11]  Weis WI, Kobilka BK (2008) Structural insights into G-protein-coupled receptor activation. Curr Opin Struct Biol 18: 734–740. doi: 10.1016/j.sbi.2008.09.010
[12]  Steyaert J, Kobilka BK (2011) Nanobody stabilization of G protein-coupled receptor conformational states. Curr Opin Struct Biol 21: 567–572. doi: 10.1016/j.sbi.2011.06.011
[13]  Lundstrom K, Wagner R, Reinhart C, Desmyter A, Cherouati N, et al. (2006) Structural genomics on membrane proteins: comparison of more than 100 GPCRs in 3 expression systems. J Struct Funct Genomics 7: 77–91. doi: 10.1007/s10969-006-9011-2
[14]  Marques B, Liguori L, Paclet MH, Villegas-Mendez A, Rothe R, et al. (2007) Liposome-mediated cellular delivery of active gp91(phox). PLoS One 2: e856. doi: 10.1371/journal.pone.0000856
[15]  Andre N, Cherouati N, Prual C, Steffan T, Zeder-Lutz G, et al. (2006) Enhancing functional production of G protein-coupled receptors in Pichia pastoris to levels required for structural studies via a single expression screen. Protein Sci 15: 1115–1126. doi: 10.1110/ps.062098206
[16]  Hassaine G, Wagner R, Kempf J, Cherouati N, Hassaine N, et al. (2006) Semliki Forest virus vectors for overexpression of 101 G protein-coupled receptors in mammalian host cells. Protein Expr Purif 45: 343–351. doi: 10.1016/j.pep.2005.06.007
[17]  Hassaine G, Deluz C, Li XD, Graff A, Vogel H, et al. (2013) Large scale expression and purification of the mouse 5-HT3 receptor. Biochim Biophys Acta 1828: 2544–2552. doi: 10.1016/j.bbamem.2013.09.002
[18]  Audinot V, Mailliet F, Lahaye-Brasseur C, Bonnaud A, Le Gall A, et al. (2003) New selective ligands of human cloned melatonin MT1 and MT2 receptors. Naunyn Schmiedebergs Arch Pharmacol 367: 553–561. doi: 10.1007/s00210-003-0751-2
[19]  Legros C, Devavry S, Caignard S, Tessier C, Delagrange P, et al. (2014) Melatonin MT1 and MT2 receptors display different molecular pharmacologies only in the G-protein coupled state. Br J Pharmacol 171: 186–201. doi: 10.1111/bph.12457
[20]  Denisov IG, Grinkova YV, Lazarides AA, Sligar SG (2004) Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J Am Chem Soc 126: 3477–3487. doi: 10.1021/ja0393574
[21]  Oldham WM, Van Eps N, Preininger AM, Hubbell WL, Hamm HE (2006) Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nat Struct Mol Biol 13: 772–777. doi: 10.1038/nsmb1129
[22]  Oldham WM, Van Eps N, Preininger AM, Hubbell WL, Hamm HE (2007) Mapping allosteric connections from the receptor to the nucleotide-binding pocket of heterotrimeric G proteins. Proc Natl Acad Sci U S A 104: 7927–7932. doi: 10.1073/pnas.0702623104
[23]  Kozasa T (2004) Purification of G protein subunits from Sf9 insect cells using hexahistidine-tagged alpha and beta gamma subunits. Methods Mol Biol 237: 21–38. doi: 10.1385/1-59259-430-1:21
[24]  Liguori L, Marques B, Lenormand JL (2008) A bacterial cell-free expression system to produce membrane proteins and proteoliposomes: from cDNA to functional assay. Curr Protoc Protein Sci Chapter 5 : Unit 5 22.
[25]  Mailliet F, Audinot V, Malpaux B, Bonnaud A, Delagrange P, et al. (2004) Molecular pharmacology of the ovine melatonin receptor: comparison with recombinant human MT1 and MT2 receptors. Biochem Pharmacol 67: 667–677. doi: 10.1016/j.bcp.2003.09.037
[26]  Coge F, Guenin SP, Fery I, Migaud M, Devavry S, et al. (2009) The end of a myth: cloning and characterization of the ovine melatonin MT(2) receptor. Br J Pharmacol 158: 1248–1262. doi: 10.1111/j.1476-5381.2009.00453.x
[27]  Audinot V, Bonnaud A, Grandcolas L, Rodriguez M, Nagel N, et al. (2008) Molecular cloning and pharmacological characterization of rat melatonin MT1 and MT2 receptors. Biochem Pharmacol 75: 2007–2019. doi: 10.1016/j.bcp.2008.02.022
[28]  Devavry S, Legros C, Brasseur C, Cohen W, Guenin SP, et al. (2012) Molecular pharmacology of the mouse melatonin receptors MT(1) and MT(2). Eur J Pharmacol 677: 15–21. doi: 10.1016/j.ejphar.2011.12.009
[29]  El Moustaine D, Granier S, Doumazane E, Scholler P, Rahmeh R, et al. (2012) Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling. Proc Natl Acad Sci U S A 109: 16342–7. doi: 10.1073/pnas.1205838109
[30]  Damian M, Marie J, Leyris JP, Fehrentz JA, Verdié P, et al. (2012) High constitutive activity is an intrinsic feature of ghrelin receptor protein: a study with a functional monomeric GHS-R1a receptor reconstituted in lipid discs. J Biol Chem 287: 3630–41. doi: 10.1074/jbc.m111.288324
[31]  Devavry S, Legros C, Brasseur C, Delagrange P, Spadoni G, et al. (2012) Description of the constitutive activity of cloned human melatonin receptors hMT(1) and hMT(2) and discovery of inverse agonists. J Pineal Res 53: 29–37. doi: 10.1111/j.1600-079x.2011.00968.x
[32]  Chiu ML, Tsang C, Grihalde N, MacWilliams MP (2008) Over-expression, solubilization, and purification of G protein-coupled receptors for structural biology. Comb Chem High Throughput Screen 11: 439–462. doi: 10.2174/138620708784911456
[33]  Alkhalfioui F, Logez C, Bornert O, Wagner R (2011) Expression systems: Pichia pastoris. in: Production of Membrane Proteins – Strategies for Expression and Isolation (Robinson AS, ed), Wiley-VCH: 75–108.
[34]  Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, et al. (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475: 65–70. doi: 10.1038/nature10236
[35]  Hino T, Arakawa T, Iwanari H, Yurugi-Kobayashi T, Ikeda-Suno C, et al. (2012) G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482: 237–240. doi: 10.1038/nature10750
[36]  Vernier G, Wang J, Jennings LD, Sun J, Fischer A, et al. (2009) Solubilization and characterization of the anthrax toxin pore in detergent micelles. Protein Sci 18: 1882–1895. doi: 10.1002/pro.199
[37]  McDevitt CA, Collins RF, Conway M, Modok S, Storm J, et al. (2006) Purification and 3D structural analysis of oligomeric human multidrug transporter ABCG2. Structure 14: 1623–1632. doi: 10.1016/j.str.2006.08.014
[38]  Pozza A, Perez-Victoria JM, Sardo A, Ahmed-Belkacem A, Di Pietro A (2006) Purification of breast cancer resistance protein ABCG2 and role of arginine-482. Cell Mol Life Sci 63: 1912–1922. doi: 10.1007/s00018-006-6159-7
[39]  Pawate S, Schey KL, Meier GP, Ullian ME, Mais DE, et al. (1998) Expression, characterization, and purification of C-terminally hexahistidine-tagged thromboxane A2 receptors. J Biol Chem 273: 22753–22760. doi: 10.1074/jbc.273.35.22753
[40]  Chattopadhyay A, Harikumar KG, Kalipatnapu S (2002) Solubilization of high affinity G-protein-coupled serotonin1A receptors from bovine hippocampus using pre-micellar CHAPS at low concentration. Mol Membr Biol 19: 211–220. doi: 10.1080/09687680210149586
[41]  Vukoti K, Kimura T, Macke L, Gawrisch K, Yeliseev A (2012) Stabilization of functional recombinant cannabinoid receptor CB(2) in detergent micelles and lipid bilayers. PLoS One 7: e46290. doi: 10.1371/journal.pone.0046290
[42]  O'Malley MA, Helgeson ME, Wagner NJ, Robinson AS (2011) The morphology and composition of cholesterol-rich micellar nanostructures determine transmembrane protein (GPCR) activity. Biophys J 100: L11–13. doi: 10.1016/j.bpj.2010.12.3698
[43]  Leck KJ, Zhang S, Hauser CA (2010) Study of bioengineered zebra fish olfactory receptor 131–2: receptor purification and secondary structure analysis. PLoS One 5: e15027. doi: 10.1371/journal.pone.0015027
[44]  Wang X, Zhang S (2011) Production of a bioengineered G-protein coupled receptor of human formyl peptide receptor 3. PLoS One 6: e23076. doi: 10.1371/journal.pone.0023076
[45]  Kunji ER, Harding M, Butler PJ, Akamine P (2008) Determination of the molecular mass and dimensions of membrane proteins by size exclusion chromatography. Methods 46: 62–72. doi: 10.1016/j.ymeth.2008.10.020
[46]  Boutin JA, Lahaye C, Pegurier C, Nicolas JP, Fauchere JL, et al. (2000) Screening of ligand binding on melatonin receptor using non-peptide combinatorial libraries. J Recept Signal Transduct Res 20: 105–118. doi: 10.3109/10799890009150040
[47]  Yan JH, Su HR, Boutin JA, Renard MP, Wang MW (2008) High-throughput screening assay for new ligands at human melatonin receptors. Acta Pharmacol Sin 29: 1515–1521. doi: 10.1111/j.1745-7254.2008.00903.x
[48]  Opekarova M, Tanner W (2003) Specific lipid requirements of membrane proteins—a putative bottleneck in heterologous expression. Biochim Biophys Acta 1610: 11–22. doi: 10.1016/s0005-2736(02)00708-3
[49]  Oates J, Watts A (2011) Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr Opin Struct Biol 21: 802–807. doi: 10.1016/j.sbi.2011.09.007
[50]  Lagane B, Gaibelet G, Meilhoc E, Masson JM, Cezanne L, et al. (2000) Role of sterols in modulating the human mu-opioid receptor function in Saccharomyces cerevisiae. J Biol Chem 275: 33197–33200. doi: 10.1074/jbc.c000576200
[51]  Thompson AA, Liu JJ, Chun E, Wacker D, Wu H, et al. (2011) GPCR stabilization using the bicelle-like architecture of mixed sterol-detergent micelles. Methods 55: 310–317. doi: 10.1016/j.ymeth.2011.10.011
[52]  Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, et al. (2008) A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 16: 897–905. doi: 10.1016/j.str.2008.05.001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133