全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Multivalent Viral Capsids with Internal Cargo for Fibrin Imaging

DOI: 10.1371/journal.pone.0100678

Full-Text   Cite this paper   Add to My Lib

Abstract:

Thrombosis is the cause of many cardiovascular syndromes and is a significant contributor to life-threatening diseases, such as myocardial infarction and stroke. Thrombus targeted imaging agents have the capability to provide molecular information about pathological clots, potentially improving detection, risk stratification, and therapy of thrombosis-related diseases. Nanocarriers are a promising platform for the development of molecular imaging agents as they can be modified to have external targeting ligands and internal functional cargo. In this work, we report the synthesis and use of chemically functionalized bacteriophage MS2 capsids as biomolecule-based nanoparticles for fibrin imaging. The capsids were modified using an oxidative coupling reaction, conjugating ~90 copies of a fibrin targeting peptide to the exterior of each protein shell. The ability of the multivalent, targeted capsids to bind fibrin was first demonstrated by determining the impact on thrombin-mediated clot formation. The modified capsids out-performed the free peptides and were shown to inhibit clot formation at effective concentrations over ten-fold lower than the monomeric peptide alone. The installation of near-infrared fluorophores on the interior surface of the capsids enabled optical detection of binding to fibrin clots. The targeted capsids bound to fibrin, exhibiting higher signal-to-background than control, non-targeted MS2-based nanoagents. The in vitro assessment of the capsids suggests that fibrin-targeted MS2 capsids could be used as delivery agents to thrombi for diagnostic or therapeutic applications.

References

[1]  Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, et al. (2012) Heart Disease and Stroke Statistics–2012 Update A Report From the American Heart Association. Circulation 125: e2–e220 doi:10.1161/CIR.0b013e31823ac046.
[2]  Choudhury RP, Fuster V, Fayad ZA (2004) Molecular, cellular and functional imaging of atherothrombosis. Nat Rev Drug Discovery 3: 913–925 doi:10.1038/nrd1548.
[3]  Sanz J, Fayad ZA (2008) Imaging of atherosclerotic cardiovascular disease. Nature 451: 953–957 doi:10.1038/nature06803.
[4]  Choudhury RP, Fisher EA (2009) Molecular Imaging in Atherosclerosis, Thrombosis, and Vascular Inflammation. Arterioscler Thromb Vasc Biol 29: 983–991 doi:10.1161/ATVBAHA.108.165498.
[5]  McCarthy JR, Jaffer FA (2011) The role of nanomedicine in the imaging and therapy of thrombosis. Nanomedicine 6: 1291–1293 doi:10.2217/nnm.11.128.
[6]  McCarthy JR (2010) Nanomedicine and Cardiovascular Disease. Curr Cardiovasc Imaging Rep 3: 42–49 doi:10.1007/s12410-009-9002-3.
[7]  Chacko A-M, Hood ED, Zern BJ, Muzykantov VR (2011) Targeted nanocarriers for imaging and therapy of vascular inflammation. Curr Opin Colloid & Interface Sci 16: 215–227 doi:10.1016/j.cocis.2011.01.008.
[8]  Li D, Patel AR, Klibanov AL, Kramer CM, Ruiz M, et al. (2010) Molecular imaging of atherosclerotic plaques targeted to oxidized LDL receptor LOX-1 by SPECT/CT and magnetic resonance. Circ Cardiovasc Imaging 3: 464–472 doi:10.1161/CIRCIMAGING.109.896654.
[9]  Kamaly N, Miller AD (2010) Paramagnetic Liposome Nanoparticles for Cellular and Tumour Imaging. Int J Mol Sci 11: 1759–1776 doi:10.3390/ijms11041759.
[10]  Parrott MC, Benhabbour SR, Saab C, Lemon JA, Parker S, et al. (2009) Synthesis, Radiolabeling, and Bio-imaging of High-Generation Polyester Dendrimers. J Am Chem Soc 131: 2906–2916 doi:10.1021/ja8078175.
[11]  Lee CC, MacKay JA, Fréchet JMJ, Szoka FC (2005) Designing dendrimers for biological applications. Nature Biotechnol 23: 1517–1526 doi:10.1038/nbt1171.
[12]  McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60: 1241–1251 doi:10.1016/j.addr.2008.03.014.
[13]  Jayagopal A, Russ PK, Haselton FR (2007) Surface Engineering of Quantum Dots for In Vivo Vascular Imaging. Bioconjugate Chem 18: 1424–1433 doi:10.1021/bc070020r.
[14]  Yildiz I, Shukla S, Steinmetz NF (2011) Applications of viral nanoparticles in medicine. Curr Opin Biotechnol 22: 901–908 doi:10.1016/j.copbio.2011.04.020.
[15]  Manchester M, Singh P (2006) Virus-based nanoparticles (VNPs): Platform technologies for diagnostic imaging. Adv Drug Deliv Rev 58: 1505–1522 doi:10.1016/j.addr.2006.09.014.
[16]  Lee LA, Wang Q (2006) Adaptations of nanoscale viruses and other protein cages for medical applications. Nanomedicine 2: 137–149 doi:10.1016/j.nano.2006.07.009.
[17]  Li F, Zhang Z-P, Peng J, Cui Z-Q, Pang D-W, et al. (2009) Imaging viral behavior in Mammalian cells with self-assembled capsid-quantum-dot hybrid particles. Small 5: 718–726 doi:10.1002/smll.200801303.
[18]  Uchida M, Kosuge H, Terashima M, Willits DA, Liepold LO, et al. (2011) Protein Cage Nanoparticles Bearing the LyP-1 Peptide for Enhanced Imaging of Macrophage-Rich Vascular Lesions. ACS Nano 5: 2493–2502 doi:10.1021/nn102863y.
[19]  Kitagawa T, Kosuge H, Uchida M, Dua M, Iida Y, et al. (2012) RGD-Conjugated Human Ferritin Nanoparticles for Imaging Vascular Inflammation and Angiogenesis in Experimental Carotid and Aortic Disease. Molecular Imaging and Biology 14: 315–324 doi:10.1007/s11307-011-0495-1.
[20]  Terashima M, Uchida M, Kosuge H, Tsao PS, Young MJ, et al. (2011) Human ferritin cages for imaging vascular macrophages. Biomaterials 32: 1430–1437 doi:10.1016/j.biomaterials.2010.09.029.
[21]  Uchida M, Flenniken ML, Allen M, Willits DA, Crowley BE, et al. (2006) Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J Am Chem Soc 128: 16626–16633 doi:10.1021/ja0655690.
[22]  Kickhoefer VA, Garcia Y, Mikyas Y, Johansson E, Zhou JC, et al. (2005) Engineering of vault nanocapsules with enzymatic and fluorescent properties. Proc Natl Acad Sci USA 102: 4348–4352 doi:10.1073/pnas.0500929102.
[23]  Pokorski JK, Hovlid ML, Finn MG (2011) Cell targeting with hybrid Qβ virus-like particles displaying epidermal growth factor. ChemBioChem 12: 2441–2447 doi:10.1002/cbic.201100469.
[24]  Tong GJ, Hsiao SC, Carrico ZM, Francis MB (2009) Viral Capsid DNA Aptamer Conjugates as Multivalent Cell-Targeting Vehicles. J Am Chem Soc 131: 11174–11178 doi:10.1021/ja903857f.
[25]  Ashley CE, Carnes EC, Phillips GK, Durfee PN, Buley MD, et al. (2011) Cell-Specific Delivery of Diverse Cargos by Bacteriophage MS2 Virus-like Particles. ACS Nano 5: 5729–5745 doi:10.1021/nn201397z.
[26]  Plummer EM, Thomas D, Destito G, Shriver LP, Manchester M (2012) Interaction of cowpea mosaic virus nanoparticles with surface vimentin and inflammatory cells in atherosclerotic lesions. Nanomedicine 7: 877–888 doi:10.2217/nnm.11.185.
[27]  Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818–822. doi: 10.1038/346818a0
[28]  Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505–510. doi: 10.1126/science.2200121
[29]  Kodadek T, Bachhawat-Sikder K (2006) Optimized protocols for the isolation of specific protein-binding peptides or peptoids from combinatorial libraries displayed on beads. Mol BioSyst 2: 25–35 doi:10.1039/b514349g.
[30]  Udugamasooriya DG, Dineen SP, Brekken RA, Kodadek T (2008) A peptoid “antibody surrogate” that antagonizes VEGF receptor 2 activity. J Am Chem Soc 130: 5744–5752 doi:10.1021/ja711193x.
[31]  Binz HK, Stumpp MT, Forrer P, Amstutz P, Plückthun A (2003) Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J Mol Biol 332: 489–503. doi: 10.1016/s0022-2836(03)00896-9
[32]  Binz HK, Amstutz P, Kohl A, Stumpp MT, Briand C, et al. (2004) High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol 22: 575–582 doi:10.1038/nbt962.
[33]  Hooker JM, Kovacs EW, Francis MB (2004) Interior Surface Modification of Bacteriophage MS2. J Am Chem Soc 126: 3718–3719 doi:10.1021/ja031790q.
[34]  Carrico ZM, Romanini DW, Mehl RA, Francis MB (2008) Oxidative coupling of peptides to a virus capsid containing unnatural amino acids. Chem Commun: 1205. doi:10.1039/b717826c.
[35]  Mastico RA, Talbot SJ, Stockley PG (1993) Multiple presentation of foreign peptides on the surface of an RNA-free spherical bacteriophage capsid. J Gen Virol 74 (Pt 4): 541–548. doi: 10.1099/0022-1317-74-4-541
[36]  Behrens CR, Hooker JM, Obermeyer AC, Romanini DW, Katz EM, et al. (2011) Rapid Chemoselective Bioconjugation through Oxidative Coupling of Anilines and Aminophenols. J Am Chem Soc 133: 16398–16401 doi:10.1021/ja2033298.
[37]  Wei B, Wei Y, Zhang K, Wang J, Xu R, et al. (2009) Development of an antisense RNA delivery system using conjugates of the MS2 bacteriophage capsids and HIV-1 TAT cell-penetrating peptide. Biomed Pharmacother 63: 313–318 doi:10.1016/j.biopha.2008.07.086.
[38]  Laudano AP, Doolittle RF (1978) Synthetic peptide derivatives that bind to fibrinogen and prevent the polymerization of fibrin monomers. Proc Natl Acad Sci USA 75: 3085–3089. doi: 10.1073/pnas.75.7.3085
[39]  Pratt KP, C?té HC, Chung DW, Stenkamp RE, Davie EW (1997) The primary fibrin polymerization pocket: three-dimensional structure of a 30-kDa C-terminal gamma chain fragment complexed with the peptide Gly-Pro-Arg-Pro. Proc Natl Acad Sci USA 94: 7176–7181. doi: 10.1073/pnas.94.14.7176
[40]  Yang Z, Mochalkin I, Doolittle RF (2000) A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides. Proc Natl Acad Sci USA 97: 14156–14161 doi:10.1073/pnas.97.26.14156.
[41]  Thakur ML, Pallela VR, Consigny PM, Rao PS, Vessileva-Belnikolovska D, et al. (2000) Imaging vascular thrombosis with 99mTc-labeled fibrin alpha-chain peptide. J Nucl Med 41: 161–168.
[42]  Aruva MR, Daviau J, Sharma SS, Thakur ML (2006) Imaging thromboembolism with fibrin-avid 99mTc-peptide: evaluation in swine. J Nucl Med 47: 155–162.
[43]  McCarthy JR, Patel P, Botnaru I, Haghayeghi P, Weissleder R, et al. (2009) Multimodal Nanoagents for the Detection of Intravascular Thrombi. Bioconjugate Chem 20: 1251–1255 doi:10.1021/bc9001163.
[44]  Yu X, Song SK, Chen J, Scott MJ, Fuhrhop RJ, et al. (2000) High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn Reson Med 44: 867–872. doi: 10.1002/1522-2594(200012)44:6<867::aid-mrm7>3.0.co;2-p
[45]  Peter K, Graeber J, Kipriyanov S, Zewe-Welschof M, Runge MS, et al. (2000) Construction and functional evaluation of a single-chain antibody fusion protein with fibrin targeting and thrombin inhibition after activation by factor Xa. Circulation 101: 1158–1164. doi: 10.1161/01.cir.101.10.1158
[46]  Overoye-Chan K, Koerner S, Looby RJ, Kolodziej AF, Zech SG, et al. (2008) EP-2104R: A Fibrin-Specific Gadolinium-Based MRI Contrast Agent for Detection of Thrombus. J Am Chem Soc 130: 6025–6039 doi:10.1021/ja800834y.
[47]  Kolodziej AF, Nair SA, Graham P, McMurry TJ, Ladner RC, et al. (2012) Fibrin Specific Peptides Derived by Phage Display: Characterization of Peptides and Conjugates for Imaging. Bioconjugate Chem 23: 548–556 doi:10.1021/bc200613e.
[48]  Hood CA, Fuentes G, Patel H, Page K, Menakuru M, et al. (2008) Fast conventional Fmoc solid-phase peptide synthesis with HCTU. J Pept Sci 14: 97–101 doi:10.1002/psc.921.
[49]  Wang L, Brock A, Herberich B, Schultz PG (2001) Expanding the Genetic Code of Escherichia coli. Science 292: 498–500 doi:10.1126/science.1060077.
[50]  Santoro SW, Wang L, Herberich B, King DS, Schultz PG (2002) An efficient system for the evolution of aminoacyl-tRNA synthetase specificity. Nat Biotechnol 20: 1044–1048 doi:10.1038/nbt742.
[51]  Comellas-Aragonès M, Sikkema FD, Delaittre G, Terry AE, King SM, et al. (2011) Solution scattering studies on a virus capsid protein as a building block for nanoscale assemblies. Soft Matter 7: 11380–11391 doi:10.1039/C1SM06123B.
[52]  Latallo ZS, Fletcher AP, Alkjaersig N, Sherry S (1962) Inhibition of fibrin polymerization by fibrinogen proteolysis products. Am J Physiol 202: 681–686.
[53]  Soon ASC, Lee CS, Barker TH (2011) Modulation of fibrin matrix properties via knob:hole affinity interactions using peptide–PEG conjugates. Biomaterials 32: 4406–4414 doi:10.1016/j.biomaterials.2011.02.050.
[54]  Watson JW, Doolittle RF (2011) Peptide-derivatized albumins that inhibit fibrin polymerization. Biochemistry 50: 9923–9927 doi:10.1021/bi201406c.
[55]  Nahrendorf M, Keliher E, Panizzi P, Zhang H, Hembrador S, et al. (2009) 18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis. JACC Cardiovasc Imaging 2: 1213–1222 doi:10.1016/j.jcmg.2009.04.016.
[56]  Sigal GB, Mammen M, Dahmann G, Whitesides GM (1996) Polyacrylamides Bearing Pendant α-Sialoside Groups Strongly Inhibit Agglutination of Erythrocytes by Influenza Virus:?The Strong Inhibition Reflects Enhanced Binding through Cooperative Polyvalent Interactions. J Am Chem Soc 118: 3789–3800 doi:10.1021/ja953729u.
[57]  Gestwicki JE, Cairo CW, Strong LE, Oetjen KA, Kiessling LL (2002) Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. J Am Chem Soc 124: 14922–14933. doi: 10.1021/ja027184x
[58]  Woller EK, Walter ED, Morgan JR, Singel DJ, Cloninger MJ (2003) Altering the Strength of Lectin Binding Interactions and Controlling the Amount of Lectin Clustering Using Mannose/Hydroxyl-Functionalized Dendrimers. J Am Chem Soc 125: 8820–8826 doi:10.1021/ja0352496.
[59]  Garimella PD, Datta A, Romanini DW, Raymond KN, Francis MB (2011) Multivalent, High-Relaxivity MRI Contrast Agents Using Rigid Cysteine-Reactive Gadolinium Complexes. J Am Chem Soc 133: 14704–14709 doi:10.1021/ja204516p.
[60]  Meldrum T, Seim KL, Bajaj VS, Palaniappan KK, Wu W, et al. (2010) A xenon-based molecular sensor assembled on an MS2 viral capsid scaffold. J Am Chem Soc 132: 5936–5937 doi:10.1021/ja100319f.
[61]  Farkas ME, Aanei IL, Behrens CR, Tong GJ, Murphy ST, et al. (2013) PET Imaging and Biodistribution of Chemically Modified Bacteriophage MS2. Mol Pharmaceutics 10: 69–76 doi:10.1021/mp3003754.
[62]  Hui KY, Haber E, Matsueda GR (1983) Monoclonal antibodies to a synthetic fibrin-like peptide bind to human fibrin but not fibrinogen. Science 222: 1129–1132. doi: 10.1126/science.6648524
[63]  Knight LC, Maurer AH, Ammar IA, Shealy DJ, Mattis JA (1988) Evaluation of indium-111-labeled anti-fibrin antibody for imaging vascular thrombi. J Nucl Med 29: 494–502.
[64]  Laemmli UK (1970) Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4. Nature 227: 680–685. doi: 10.1038/227680a0
[65]  Johnson P, Mihalyi E (1965) Physicochemical studies of bovine fibrinogen I. Molecular weight and hydrodynamic properties of fibrinogen and fibrinogen cleaved by sulfite in 5 M guanidine · HCl solution. Biochim Biophys Acta Biophys Incl Photosynth 102: 467–475 doi:10.1016/0926-6585(65)90137-8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133