[1] | Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, et al. (2012) Heart Disease and Stroke Statistics–2012 Update A Report From the American Heart Association. Circulation 125: e2–e220 doi:10.1161/CIR.0b013e31823ac046.
|
[2] | Choudhury RP, Fuster V, Fayad ZA (2004) Molecular, cellular and functional imaging of atherothrombosis. Nat Rev Drug Discovery 3: 913–925 doi:10.1038/nrd1548.
|
[3] | Sanz J, Fayad ZA (2008) Imaging of atherosclerotic cardiovascular disease. Nature 451: 953–957 doi:10.1038/nature06803.
|
[4] | Choudhury RP, Fisher EA (2009) Molecular Imaging in Atherosclerosis, Thrombosis, and Vascular Inflammation. Arterioscler Thromb Vasc Biol 29: 983–991 doi:10.1161/ATVBAHA.108.165498.
|
[5] | McCarthy JR, Jaffer FA (2011) The role of nanomedicine in the imaging and therapy of thrombosis. Nanomedicine 6: 1291–1293 doi:10.2217/nnm.11.128.
|
[6] | McCarthy JR (2010) Nanomedicine and Cardiovascular Disease. Curr Cardiovasc Imaging Rep 3: 42–49 doi:10.1007/s12410-009-9002-3.
|
[7] | Chacko A-M, Hood ED, Zern BJ, Muzykantov VR (2011) Targeted nanocarriers for imaging and therapy of vascular inflammation. Curr Opin Colloid & Interface Sci 16: 215–227 doi:10.1016/j.cocis.2011.01.008.
|
[8] | Li D, Patel AR, Klibanov AL, Kramer CM, Ruiz M, et al. (2010) Molecular imaging of atherosclerotic plaques targeted to oxidized LDL receptor LOX-1 by SPECT/CT and magnetic resonance. Circ Cardiovasc Imaging 3: 464–472 doi:10.1161/CIRCIMAGING.109.896654.
|
[9] | Kamaly N, Miller AD (2010) Paramagnetic Liposome Nanoparticles for Cellular and Tumour Imaging. Int J Mol Sci 11: 1759–1776 doi:10.3390/ijms11041759.
|
[10] | Parrott MC, Benhabbour SR, Saab C, Lemon JA, Parker S, et al. (2009) Synthesis, Radiolabeling, and Bio-imaging of High-Generation Polyester Dendrimers. J Am Chem Soc 131: 2906–2916 doi:10.1021/ja8078175.
|
[11] | Lee CC, MacKay JA, Fréchet JMJ, Szoka FC (2005) Designing dendrimers for biological applications. Nature Biotechnol 23: 1517–1526 doi:10.1038/nbt1171.
|
[12] | McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60: 1241–1251 doi:10.1016/j.addr.2008.03.014.
|
[13] | Jayagopal A, Russ PK, Haselton FR (2007) Surface Engineering of Quantum Dots for In Vivo Vascular Imaging. Bioconjugate Chem 18: 1424–1433 doi:10.1021/bc070020r.
|
[14] | Yildiz I, Shukla S, Steinmetz NF (2011) Applications of viral nanoparticles in medicine. Curr Opin Biotechnol 22: 901–908 doi:10.1016/j.copbio.2011.04.020.
|
[15] | Manchester M, Singh P (2006) Virus-based nanoparticles (VNPs): Platform technologies for diagnostic imaging. Adv Drug Deliv Rev 58: 1505–1522 doi:10.1016/j.addr.2006.09.014.
|
[16] | Lee LA, Wang Q (2006) Adaptations of nanoscale viruses and other protein cages for medical applications. Nanomedicine 2: 137–149 doi:10.1016/j.nano.2006.07.009.
|
[17] | Li F, Zhang Z-P, Peng J, Cui Z-Q, Pang D-W, et al. (2009) Imaging viral behavior in Mammalian cells with self-assembled capsid-quantum-dot hybrid particles. Small 5: 718–726 doi:10.1002/smll.200801303.
|
[18] | Uchida M, Kosuge H, Terashima M, Willits DA, Liepold LO, et al. (2011) Protein Cage Nanoparticles Bearing the LyP-1 Peptide for Enhanced Imaging of Macrophage-Rich Vascular Lesions. ACS Nano 5: 2493–2502 doi:10.1021/nn102863y.
|
[19] | Kitagawa T, Kosuge H, Uchida M, Dua M, Iida Y, et al. (2012) RGD-Conjugated Human Ferritin Nanoparticles for Imaging Vascular Inflammation and Angiogenesis in Experimental Carotid and Aortic Disease. Molecular Imaging and Biology 14: 315–324 doi:10.1007/s11307-011-0495-1.
|
[20] | Terashima M, Uchida M, Kosuge H, Tsao PS, Young MJ, et al. (2011) Human ferritin cages for imaging vascular macrophages. Biomaterials 32: 1430–1437 doi:10.1016/j.biomaterials.2010.09.029.
|
[21] | Uchida M, Flenniken ML, Allen M, Willits DA, Crowley BE, et al. (2006) Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J Am Chem Soc 128: 16626–16633 doi:10.1021/ja0655690.
|
[22] | Kickhoefer VA, Garcia Y, Mikyas Y, Johansson E, Zhou JC, et al. (2005) Engineering of vault nanocapsules with enzymatic and fluorescent properties. Proc Natl Acad Sci USA 102: 4348–4352 doi:10.1073/pnas.0500929102.
|
[23] | Pokorski JK, Hovlid ML, Finn MG (2011) Cell targeting with hybrid Qβ virus-like particles displaying epidermal growth factor. ChemBioChem 12: 2441–2447 doi:10.1002/cbic.201100469.
|
[24] | Tong GJ, Hsiao SC, Carrico ZM, Francis MB (2009) Viral Capsid DNA Aptamer Conjugates as Multivalent Cell-Targeting Vehicles. J Am Chem Soc 131: 11174–11178 doi:10.1021/ja903857f.
|
[25] | Ashley CE, Carnes EC, Phillips GK, Durfee PN, Buley MD, et al. (2011) Cell-Specific Delivery of Diverse Cargos by Bacteriophage MS2 Virus-like Particles. ACS Nano 5: 5729–5745 doi:10.1021/nn201397z.
|
[26] | Plummer EM, Thomas D, Destito G, Shriver LP, Manchester M (2012) Interaction of cowpea mosaic virus nanoparticles with surface vimentin and inflammatory cells in atherosclerotic lesions. Nanomedicine 7: 877–888 doi:10.2217/nnm.11.185.
|
[27] | Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818–822. doi: 10.1038/346818a0
|
[28] | Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505–510. doi: 10.1126/science.2200121
|
[29] | Kodadek T, Bachhawat-Sikder K (2006) Optimized protocols for the isolation of specific protein-binding peptides or peptoids from combinatorial libraries displayed on beads. Mol BioSyst 2: 25–35 doi:10.1039/b514349g.
|
[30] | Udugamasooriya DG, Dineen SP, Brekken RA, Kodadek T (2008) A peptoid “antibody surrogate” that antagonizes VEGF receptor 2 activity. J Am Chem Soc 130: 5744–5752 doi:10.1021/ja711193x.
|
[31] | Binz HK, Stumpp MT, Forrer P, Amstutz P, Plückthun A (2003) Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J Mol Biol 332: 489–503. doi: 10.1016/s0022-2836(03)00896-9
|
[32] | Binz HK, Amstutz P, Kohl A, Stumpp MT, Briand C, et al. (2004) High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol 22: 575–582 doi:10.1038/nbt962.
|
[33] | Hooker JM, Kovacs EW, Francis MB (2004) Interior Surface Modification of Bacteriophage MS2. J Am Chem Soc 126: 3718–3719 doi:10.1021/ja031790q.
|
[34] | Carrico ZM, Romanini DW, Mehl RA, Francis MB (2008) Oxidative coupling of peptides to a virus capsid containing unnatural amino acids. Chem Commun: 1205. doi:10.1039/b717826c.
|
[35] | Mastico RA, Talbot SJ, Stockley PG (1993) Multiple presentation of foreign peptides on the surface of an RNA-free spherical bacteriophage capsid. J Gen Virol 74 (Pt 4): 541–548. doi: 10.1099/0022-1317-74-4-541
|
[36] | Behrens CR, Hooker JM, Obermeyer AC, Romanini DW, Katz EM, et al. (2011) Rapid Chemoselective Bioconjugation through Oxidative Coupling of Anilines and Aminophenols. J Am Chem Soc 133: 16398–16401 doi:10.1021/ja2033298.
|
[37] | Wei B, Wei Y, Zhang K, Wang J, Xu R, et al. (2009) Development of an antisense RNA delivery system using conjugates of the MS2 bacteriophage capsids and HIV-1 TAT cell-penetrating peptide. Biomed Pharmacother 63: 313–318 doi:10.1016/j.biopha.2008.07.086.
|
[38] | Laudano AP, Doolittle RF (1978) Synthetic peptide derivatives that bind to fibrinogen and prevent the polymerization of fibrin monomers. Proc Natl Acad Sci USA 75: 3085–3089. doi: 10.1073/pnas.75.7.3085
|
[39] | Pratt KP, C?té HC, Chung DW, Stenkamp RE, Davie EW (1997) The primary fibrin polymerization pocket: three-dimensional structure of a 30-kDa C-terminal gamma chain fragment complexed with the peptide Gly-Pro-Arg-Pro. Proc Natl Acad Sci USA 94: 7176–7181. doi: 10.1073/pnas.94.14.7176
|
[40] | Yang Z, Mochalkin I, Doolittle RF (2000) A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides. Proc Natl Acad Sci USA 97: 14156–14161 doi:10.1073/pnas.97.26.14156.
|
[41] | Thakur ML, Pallela VR, Consigny PM, Rao PS, Vessileva-Belnikolovska D, et al. (2000) Imaging vascular thrombosis with 99mTc-labeled fibrin alpha-chain peptide. J Nucl Med 41: 161–168.
|
[42] | Aruva MR, Daviau J, Sharma SS, Thakur ML (2006) Imaging thromboembolism with fibrin-avid 99mTc-peptide: evaluation in swine. J Nucl Med 47: 155–162.
|
[43] | McCarthy JR, Patel P, Botnaru I, Haghayeghi P, Weissleder R, et al. (2009) Multimodal Nanoagents for the Detection of Intravascular Thrombi. Bioconjugate Chem 20: 1251–1255 doi:10.1021/bc9001163.
|
[44] | Yu X, Song SK, Chen J, Scott MJ, Fuhrhop RJ, et al. (2000) High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn Reson Med 44: 867–872. doi: 10.1002/1522-2594(200012)44:6<867::aid-mrm7>3.0.co;2-p
|
[45] | Peter K, Graeber J, Kipriyanov S, Zewe-Welschof M, Runge MS, et al. (2000) Construction and functional evaluation of a single-chain antibody fusion protein with fibrin targeting and thrombin inhibition after activation by factor Xa. Circulation 101: 1158–1164. doi: 10.1161/01.cir.101.10.1158
|
[46] | Overoye-Chan K, Koerner S, Looby RJ, Kolodziej AF, Zech SG, et al. (2008) EP-2104R: A Fibrin-Specific Gadolinium-Based MRI Contrast Agent for Detection of Thrombus. J Am Chem Soc 130: 6025–6039 doi:10.1021/ja800834y.
|
[47] | Kolodziej AF, Nair SA, Graham P, McMurry TJ, Ladner RC, et al. (2012) Fibrin Specific Peptides Derived by Phage Display: Characterization of Peptides and Conjugates for Imaging. Bioconjugate Chem 23: 548–556 doi:10.1021/bc200613e.
|
[48] | Hood CA, Fuentes G, Patel H, Page K, Menakuru M, et al. (2008) Fast conventional Fmoc solid-phase peptide synthesis with HCTU. J Pept Sci 14: 97–101 doi:10.1002/psc.921.
|
[49] | Wang L, Brock A, Herberich B, Schultz PG (2001) Expanding the Genetic Code of Escherichia coli. Science 292: 498–500 doi:10.1126/science.1060077.
|
[50] | Santoro SW, Wang L, Herberich B, King DS, Schultz PG (2002) An efficient system for the evolution of aminoacyl-tRNA synthetase specificity. Nat Biotechnol 20: 1044–1048 doi:10.1038/nbt742.
|
[51] | Comellas-Aragonès M, Sikkema FD, Delaittre G, Terry AE, King SM, et al. (2011) Solution scattering studies on a virus capsid protein as a building block for nanoscale assemblies. Soft Matter 7: 11380–11391 doi:10.1039/C1SM06123B.
|
[52] | Latallo ZS, Fletcher AP, Alkjaersig N, Sherry S (1962) Inhibition of fibrin polymerization by fibrinogen proteolysis products. Am J Physiol 202: 681–686.
|
[53] | Soon ASC, Lee CS, Barker TH (2011) Modulation of fibrin matrix properties via knob:hole affinity interactions using peptide–PEG conjugates. Biomaterials 32: 4406–4414 doi:10.1016/j.biomaterials.2011.02.050.
|
[54] | Watson JW, Doolittle RF (2011) Peptide-derivatized albumins that inhibit fibrin polymerization. Biochemistry 50: 9923–9927 doi:10.1021/bi201406c.
|
[55] | Nahrendorf M, Keliher E, Panizzi P, Zhang H, Hembrador S, et al. (2009) 18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis. JACC Cardiovasc Imaging 2: 1213–1222 doi:10.1016/j.jcmg.2009.04.016.
|
[56] | Sigal GB, Mammen M, Dahmann G, Whitesides GM (1996) Polyacrylamides Bearing Pendant α-Sialoside Groups Strongly Inhibit Agglutination of Erythrocytes by Influenza Virus:?The Strong Inhibition Reflects Enhanced Binding through Cooperative Polyvalent Interactions. J Am Chem Soc 118: 3789–3800 doi:10.1021/ja953729u.
|
[57] | Gestwicki JE, Cairo CW, Strong LE, Oetjen KA, Kiessling LL (2002) Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. J Am Chem Soc 124: 14922–14933. doi: 10.1021/ja027184x
|
[58] | Woller EK, Walter ED, Morgan JR, Singel DJ, Cloninger MJ (2003) Altering the Strength of Lectin Binding Interactions and Controlling the Amount of Lectin Clustering Using Mannose/Hydroxyl-Functionalized Dendrimers. J Am Chem Soc 125: 8820–8826 doi:10.1021/ja0352496.
|
[59] | Garimella PD, Datta A, Romanini DW, Raymond KN, Francis MB (2011) Multivalent, High-Relaxivity MRI Contrast Agents Using Rigid Cysteine-Reactive Gadolinium Complexes. J Am Chem Soc 133: 14704–14709 doi:10.1021/ja204516p.
|
[60] | Meldrum T, Seim KL, Bajaj VS, Palaniappan KK, Wu W, et al. (2010) A xenon-based molecular sensor assembled on an MS2 viral capsid scaffold. J Am Chem Soc 132: 5936–5937 doi:10.1021/ja100319f.
|
[61] | Farkas ME, Aanei IL, Behrens CR, Tong GJ, Murphy ST, et al. (2013) PET Imaging and Biodistribution of Chemically Modified Bacteriophage MS2. Mol Pharmaceutics 10: 69–76 doi:10.1021/mp3003754.
|
[62] | Hui KY, Haber E, Matsueda GR (1983) Monoclonal antibodies to a synthetic fibrin-like peptide bind to human fibrin but not fibrinogen. Science 222: 1129–1132. doi: 10.1126/science.6648524
|
[63] | Knight LC, Maurer AH, Ammar IA, Shealy DJ, Mattis JA (1988) Evaluation of indium-111-labeled anti-fibrin antibody for imaging vascular thrombi. J Nucl Med 29: 494–502.
|
[64] | Laemmli UK (1970) Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4. Nature 227: 680–685. doi: 10.1038/227680a0
|
[65] | Johnson P, Mihalyi E (1965) Physicochemical studies of bovine fibrinogen I. Molecular weight and hydrodynamic properties of fibrinogen and fibrinogen cleaved by sulfite in 5 M guanidine · HCl solution. Biochim Biophys Acta Biophys Incl Photosynth 102: 467–475 doi:10.1016/0926-6585(65)90137-8.
|