全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Haptoglobin Is Required to Prevent Oxidative Stress and Muscle Atrophy

DOI: 10.1371/journal.pone.0100745

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Oxidative stress (OS) plays a major role on tissue function. Several catabolic or stress conditions exacerbate OS, inducing organ deterioration. Haptoglobin (Hp) is a circulating acute phase protein, produced by liver and adipose tissue, and has an important anti-oxidant function. Hp is induced in pro-oxidative conditions such as systemic inflammation or obesity. The role of systemic factors that modulate oxidative stress inside muscle cells is still poorly investigated. Results We used Hp knockout mice (Hp-/-) to determine the role of this protein and therefore, of systemic OS in maintenance of muscle mass and function. Absence of Hp caused muscle atrophy and weakness due to activation of an atrophy program. When animals were stressed by acute exercise or by high fat diet (HFD), OS, muscle atrophy and force drop were exacerbated in Hp-/-. Depending from the stress condition, autophagy-lysosome and ubiquitin-proteasome systems were differently induced. Conclusions Hp is required to prevent OS and the activation of pathways leading to muscle atrophy and weakness in normal condition and upon metabolic challenges.

References

[1]  Dobryszycka W (1997) Biological functions of haptoglobin—new pieces to an old puzzle. Eur J Clin Chem Clin Biochem 35: 647–654.
[2]  Chiellini C, Bertacca A, Novelli SE, Gorgun CZ, Ciccarone A, et al. (2002) Obesity modulates the expression of haptoglobin in the white adipose tissue via TNFalpha. J Cell Physiol 190: 251–258. doi: 10.1002/jcp.10061
[3]  Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, et al. (2001) Identification of the haemoglobin scavenger receptor. Nature 409: 198–201. doi: 10.1038/35051594
[4]  Farbstein D, Blum S, Pollak M, Asaf R, Viener HL, et al. (2011) Vitamin E therapy results in a reduction in HDL function in individuals with diabetes and the haptoglobin 2–1 genotype. Atherosclerosis 219: 240–244. doi: 10.1016/j.atherosclerosis.2011.06.005
[5]  Lim SK, Kim H, Lim SK, bin Ali A, Lim YK, et al. (1998) Increased susceptibility in Hp knockout mice during acute hemolysis. Blood 92: 1870–1877.
[6]  Correale M, Totaro A, Abruzzese S, Di Biase M, Brunetti ND (2012) Acute phase proteins in acute coronary syndrome: an up-to-date. Cardiovasc Hematol Agents Med Chem 10: 352–361. doi: 10.2174/187152512803530298
[7]  Chiellini C, Santini F, Marsili A, Berti P, Bertacca A, et al. (2004) Serum haptoglobin: a novel marker of adiposity in humans. J Clin Endocrinol Metab 89: 2678–2683. doi: 10.1210/jc.2003-031965
[8]  Nakhoul FM, Miller-Lotan R, Awaad H, Asleh R, Levy AP (2007) Hypothesis—haptoglobin genotype and diabetic nephropathy. Nat Clin Pract Nephrol 3: 339–344. doi: 10.1038/ncpneph0467
[9]  Maffei M, Funicello M, Vottari T, Gamucci O, Costa M, et al. (2009) The obesity and inflammatory marker haptoglobin attracts monocytes via interaction with chemokine (C-C motif) receptor 2 (CCR2). BMC Biol 7: 87. doi: 10.1186/1741-7007-7-87
[10]  Lisi S, Gamucci O, Vottari T, Scabia G, Funicello M, et al. (2011) Obesity-associated hepatosteatosis and impairment of glucose homeostasis are attenuated by haptoglobin deficiency. Diabetes 60: 2496–2505. doi: 10.2337/db10-1536
[11]  Gamucci O, Lisi S, Scabia G, Marchi M, Piaggi P, et al. (2012) Haptoglobin deficiency determines changes in adipocyte size and adipogenesis. Adipocyte 1:3 142: 152. doi: 10.4161/adip.20041
[12]  Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6: 25–39. doi: 10.1242/dmm.010389
[13]  Dobrowolny G, Aucello M, Rizzuto E, Beccafico S, Mammucari C, et al. (2008) Skeletal muscle is a primary target of SOD1G93A-mediated toxicity. Cell Metab 8: 425–436. doi: 10.1016/j.cmet.2008.09.002
[14]  Jang YC, Lustgarten MS, Liu Y, Muller FL, Bhattacharya A, et al. (2010) Increased superoxide in vivo accelerates age-associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration. FASEB J 24: 1376–1390. doi: 10.1096/fj.09-146308
[15]  Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, et al. (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3: 1014–1019.
[16]  Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, et al. (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3: 1009–1013.
[17]  Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, et al. (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117: 399–412. doi: 10.1016/s0092-8674(04)00400-3
[18]  Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, et al. (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14: 395–403. doi: 10.1016/s1097-2765(04)00211-4
[19]  Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, et al. (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6: 458–471. doi: 10.1016/j.cmet.2007.11.001
[20]  Zhao J, Brault JJ, Schild A, Cao P, Sandri M, et al. (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6: 472–483. doi: 10.1016/j.cmet.2007.11.004
[21]  Lecker SH, Goldberg AL, Mitch WE (2006) Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 17: 1807–1819. doi: 10.1681/asn.2006010083
[22]  Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 98: 14440–14445. doi: 10.1073/pnas.251541198
[23]  Klionsky DJ, Codogno P, Cuervo AM, Deretic V, Elazar Z, et al.. (2010) A comprehensive glossary of autophagy-related molecules and processes. Autophagy 6..
[24]  Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147: 728–741. doi: 10.1016/j.cell.2011.10.026
[25]  Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132: 27–42. doi: 10.1016/j.cell.2007.12.018
[26]  Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451: 1069–1075. doi: 10.1038/nature06639
[27]  Tracy K, Macleod KF (2007) Regulation of mitochondrial integrity, autophagy and cell survival by BNIP3. Autophagy 3: 616–619.
[28]  Pinkston-Gosse J, Kenyon C (2007) DAF-16/FOXO targets genes that regulate tumor growth in Caenorhabditis elegans. Nat Genet 39: 1403–1409. doi: 10.1038/ng.2007.1
[29]  Bryan HK, Olayanju A, Goldring CE, Park BK (2013) The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 85: 705–717. doi: 10.1016/j.bcp.2012.11.016
[30]  Tufekci KU, Civi Bayin E, Genc S, Genc K (2011) The Nrf2/ARE Pathway: A Promising Target to Counteract Mitochondrial Dysfunction in Parkinson's Disease. Parkinsons Dis 2011: 314082. doi: 10.4061/2011/314082
[31]  Vazquez-Medina JP, Sonanez-Organis JG, Burns JM, Zenteno-Savin T, Ortiz RM (2011) Antioxidant capacity develops with maturation in the deep-diving hooded seal. J Exp Biol 214: 2903–2910. doi: 10.1242/jeb.057935
[32]  Moylan JS, Reid MB (2007) Oxidative stress, chronic disease, and muscle wasting. Muscle Nerve 35: 411–429. doi: 10.1002/mus.20743
[33]  Della Gatta PA, Garnham AP, Peake JM, Cameron-Smith D (2014) Effect of exercise training on skeletal muscle cytokine expression in the elderly. Brain Behav Immun.
[34]  Grumati P, Coletto L, Schiavinato A, Castagnaro S, Bertaggia E, et al. (2011) Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy 7: 1415–1423. doi: 10.4161/auto.7.12.17877
[35]  Styskal J, Van Remmen H, Richardson A, Salmon AB (2012) Oxidative stress and diabetes: what can we learn about insulin resistance from antioxidant mutant mouse models? Free Radic Biol Med 52: 46–58. doi: 10.1016/j.freeradbiomed.2011.10.441
[36]  Sparks LM, Xie H, Koza RA, Mynatt R, Hulver MW, et al. (2005) A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 54: 1926–1933. doi: 10.2337/diabetes.54.7.1926
[37]  Grumati P, Coletto L, Sabatelli P, Cescon M, Angelin A, et al. (2010) Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat Med 16: 1313–1320. doi: 10.1038/nm.2247
[38]  Reid MB, Moylan JS (2011) Beyond atrophy: redox mechanisms of muscle dysfunction in chronic inflammatory disease. J Physiol 589: 2171–2179. doi: 10.1113/jphysiol.2010.203356
[39]  Wang Y, Kinzie E, Berger FG, Lim SK, Baumann H (2001) Haptoglobin, an inflammation-inducible plasma protein. Redox Rep 6: 379–385. doi: 10.1179/135100001101536580
[40]  Nielsen MJ, Moestrup SK (2009) Receptor targeting of hemoglobin mediated by the haptoglobins: roles beyond heme scavenging. Blood 114: 764–771. doi: 10.1182/blood-2009-01-198309
[41]  Friedrichs WE, Navarijo-Ashbaugh AL, Bowman BH, Yang F (1995) Expression and inflammatory regulation of haptoglobin gene in adipocytes. Biochem Biophys Res Commun 209: 250–256. doi: 10.1006/bbrc.1995.1496
[42]  Raffaello A, Milan G, Masiero E, Carnio S, Lee D, et al. (2010) JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy. J Cell Biol 191: 101–113. doi: 10.1083/jcb.201001136
[43]  Sandri M (2013) Protein breakdown in muscle wasting: Role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol.
[44]  Romanello V, Guadagnin E, Gomes L, Roder I, Sandri C, et al. (2010) Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J 29: 1774–1785. doi: 10.1038/emboj.2010.60
[45]  Mikel UV (1994) Advanced Laboratory Methods in Histology and Pathology; Mikel UV, editor: Armed Forces Institute of Pathology, American Registry of Pathology, Washington, DC.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133