全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2014 

Fusion of Protein Aggregates Facilitates Asymmetric Damage Segregation

DOI: 10.1371/journal.pbio.1001886

Full-Text   Cite this paper   Add to My Lib

Abstract:

Asymmetric segregation of damaged proteins at cell division generates a cell that retains damage and a clean cell that supports population survival. In cells that divide asymmetrically, such as Saccharomyces cerevisiae, segregation of damaged proteins is achieved by retention and active transport. We have previously shown that in the symmetrically dividing Schizosaccharomyces pombe there is a transition between symmetric and asymmetric segregation of damaged proteins. Yet how this transition and generation of damage-free cells are achieved remained unknown. Here, by combining in vivo imaging of Hsp104-associated aggregates, a form of damage, with mathematical modeling, we find that fusion of protein aggregates facilitates asymmetric segregation. Our model predicts that, after stress, the increased number of aggregates fuse into a single large unit, which is inherited asymmetrically by one daughter cell, whereas the other one is born clean. We experimentally confirmed that fusion increases segregation asymmetry, for a range of stresses, and identified Hsp16 as a fusion factor. Our work shows that fusion of protein aggregates promotes the formation of damage-free cells. Fusion of cellular factors may represent a general mechanism for their asymmetric segregation at division.

References

[1]  Eichner T, Radford SE (2011) A diversity of assembly mechanisms of a generic amyloid fold. Mol Cell 43: 8–18. doi: 10.1016/j.molcel.2011.05.012
[2]  Aguilaniu H, Gustafsson L, Rigoulet M, Nystrom T (2003) Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299: 1751–1753. doi: 10.1126/science.1080418
[3]  Lindner AB, Madden R, Demarez A, Stewart EJ, Taddei F (2008) Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc Natl Acad Sci U S A 105: 3076–3081. doi: 10.1073/pnas.0708931105
[4]  Ben-Zvi A, Miller EA, Morimoto RI (2009) Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci U S A 106: 14914–14919. doi: 10.1073/pnas.0902882106
[5]  Olzscha H, Schermann SM, Woerner AC, Pinkert S, Hecht MH, et al. (2011) Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144: 67–78. doi: 10.1016/j.cell.2010.11.050
[6]  Coelho M, Dereli A, Haese A, Kuhn S, Malinovska L, et al. (2013) Fission yeast does not age under favorable conditions, but does so after stress. Curr Biol 23: 1844–1852. doi: 10.1016/j.cub.2013.07.084
[7]  Rujano MA, Bosveld F, Salomons FA, Dijk F, van Waarde MA, et al. (2006) Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes. PLoS Biol 4: e417. doi: 10.1371/journal.pbio.0040417
[8]  Liu B, Larsson L, Caballero A, Hao X, Oling D, et al. (2010) The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 140: 257–267. doi: 10.1016/j.cell.2009.12.031
[9]  Zhou C, Slaughter BD, Unruh JR, Eldakak A, Rubinstein B, et al. (2011) Motility and segregation of Hsp104-associated protein aggregates in budding yeast. Cell 147: 1186–1196. doi: 10.1016/j.cell.2011.11.002
[10]  Liu B, Larsson L, Franssens V, Hao X, Hill SM, et al. (2011) Segregation of protein aggregates involves actin and the polarity machinery. Cell 147: 959–961. doi: 10.1016/j.cell.2011.11.018
[11]  Spokoini R, Moldavski O, Nahmias Y, England JL, Schuldiner M, et al. (2012) Confinement to organelle-associated inclusion structures mediates asymmetric inheritance of aggregated protein in budding yeast. Cell Rep 2: 738–747. doi: 10.1016/j.celrep.2012.08.024
[12]  Malinovska L, Kroschwald S, Munder MC, Richter D, Alberti S (2012) Molecular chaperones and stress-inducible protein-sorting factors coordinate the spatiotemporal distribution of protein aggregates. Mol Biol Cell 23: 3041–3056. doi: 10.1091/mbc.e12-03-0194
[13]  Kaganovich D, Kopito R, Frydman J (2008) Misfolded proteins partition between two distinct quality control compartments. Nature 454: 1088–1095. doi: 10.1038/nature07195
[14]  Specht S, Miller SB, Mogk A, Bukau B (2011) Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae. J Cell Biol 195: 617–629. doi: 10.1083/jcb.201106037
[15]  Parsell DA, Kowal AS, Singer MA, Lindquist S (1994) Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372: 475–478. doi: 10.1038/372475a0
[16]  Tkach JM, Glover JR (2008) Nucleocytoplasmic trafficking of the molecular chaperone Hsp104 in unstressed and heat-shocked cells. Traffic 9: 39–56. doi: 10.1111/j.1600-0854.2007.00666.x
[17]  Bahler J, Nurse P (2001) Fission yeast Pom1p kinase activity is cell cycle regulated and essential for cellular symmetry during growth and division. Embo J 20: 1064–1073. doi: 10.1093/emboj/20.5.1064
[18]  Watve M, Parab S, Jogdand P, Keni S (2006) Aging may be a conditional strategic choice and not an inevitable outcome for bacteria. Proc Natl Acad Sci U S A 103: 14831–14835. doi: 10.1073/pnas.0606499103
[19]  Ackermann M, Chao L, Bergstrom CT, Doebeli M (2007) On the evolutionary origin of aging. Aging Cell 6: 235–244. doi: 10.1111/j.1474-9726.2007.00281.x
[20]  Erjavec N, Cvijovic M, Klipp E, Nystrom T (2008) Selective benefits of damage partitioning in unicellular systems and its effects on aging. Proc Natl Acad Sci U S A 105: 18764–18769. doi: 10.1073/pnas.0804550105
[21]  Drake R (1972) A general mathematical survey of the coagulation equation. ITopics in Current Aerosol Research, Int Rev Aerosol Phys Chem 3: 201–276.
[22]  Aldous DJ (1999) Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists. Bernoulli 5. doi: 10.2307/3318611
[23]  Laurenzi IJ, Bartels JD, Diamond SL (2002) A general algorithm for exact simulation of multicomponent aggregation processes. Journal of Computational Physics 177: 418–449. doi: 10.1006/jcph.2002.7017
[24]  Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12: 842–846. doi: 10.1038/nsmb993
[25]  Hirose M, Tohda H, Giga-Hama Y, Tsushima R, Zako T, et al. (2005) Interaction of a small heat shock protein of the fission yeast, Schizosaccharomyces pombe, with a denatured protein at elevated temperature. J Biol Chem 280: 32586–32593. doi: 10.1074/jbc.m504121200
[26]  Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94: 73–82. doi: 10.1016/s0092-8674(00)81223-4
[27]  Chen D, Toone WM, Mata J, Lyne R, Burns G, et al. (2003) Global transcriptional responses of fission yeast to environmental stress. Mol Biol Cell 14: 214–229. doi: 10.1091/mbc.e02-08-0499
[28]  Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431: 805–810. doi: 10.1038/nature02998
[29]  Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143: 1883–1898. doi: 10.1083/jcb.143.7.1883
[30]  Tessarz P, Schwarz M, Mogk A, Bukau B (2009) The yeast AAA+ chaperone Hsp104 is part of a network that links the actin cytoskeleton with the inheritance of damaged proteins. Mol Cell Biol 29: 3738–3745. doi: 10.1128/mcb.00201-09
[31]  Escusa-Toret S, Vonk WI, Frydman J (2013) Spatial sequestration of misfolded proteins by a dynamic chaperone pathway enhances cellular fitness during stress. Nat Cell Biol 15: 1231–1243. doi: 10.1038/ncb2838
[32]  Weisberg SJ, Lyakhovetsky R, Werdiger AC, Gitler AD, Soen Y, et al. (2012) Compartmentalization of superoxide dismutase 1 (SOD1G93A) aggregates determines their toxicity. Proc Natl Acad Sci U S A 109: 15811–15816. doi: 10.1073/pnas.1205829109
[33]  Winkler J, Seybert A, Konig L, Pruggnaller S, Haselmann U, et al. (2010) Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing. Embo J 29: 910–923. doi: 10.1038/emboj.2009.412
[34]  Ramdzan YM, Polling S, Chia CP, Ng IH, Ormsby AR, et al. (2012) Tracking protein aggregation and mislocalization in cells with flow cytometry. Nat Methods 9: 467–470. doi: 10.1038/nmeth.1930
[35]  Coquel AS, Jacob JP, Primet M, Demarez A, Dimiccoli M, et al. (2013) Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect. PLoS Comput Biol 9: e1003038. doi: 10.1371/journal.pcbi.1003038
[36]  Caudron F, Barral Y (2013) A super-assembly of Whi3 encodes memory of deceptive encounters by single cells during yeast courtship. Cell 155: 1244–1257. doi: 10.1016/j.cell.2013.10.046
[37]  Lee C, Zhang H, Baker AE, Occhipinti P, Borsuk ME, et al. (2013) Protein aggregation behavior regulates cyclin transcript localization and cell-cycle control. Dev Cell 25: 572–584. doi: 10.1016/j.devcel.2013.05.007
[38]  Alberti S, Halfmann R, King O, Kapila A, Lindquist S (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137: 146–158. doi: 10.1016/j.cell.2009.02.044
[39]  Narayanaswamy R, Levy M, Tsechansky M, Stovall GM, O'Connell JD, et al. (2009) Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proc Natl Acad Sci U S A 106: 10147–10152. doi: 10.1073/pnas.0812771106
[40]  Noree C, Sato BK, Broyer RM, Wilhelm JE (2010) Identification of novel filament-forming proteins in Saccharomyces cerevisiae and Drosophila melanogaster. J Cell Biol 190: 541–551. doi: 10.1083/jcb.201003001
[41]  Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, et al. (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324: 1729–1732. doi: 10.1126/science.1172046
[42]  Forsburg SL, Rhind N (2006) Basic methods for fission yeast. Yeast 23: 173–183. doi: 10.1002/yea.1347
[43]  Bahler J, Wu JQ, Longtine MS, Shah NG, McKenzie A 3rd, et al. (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14: 943–951. doi: 10.1002/(sici)1097-0061(199807)14:10<943::aid-yea292>3.3.co;2-p
[44]  Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5: 159–161. doi: 10.1038/nmeth1171
[45]  Bolte S, Talbot C, Boutte Y, Catrice O, Read ND, et al. (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214: 159–173. doi: 10.1111/j.0022-2720.2004.01348.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133