全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Resources  2013 

Calculating MIPS 2.0

DOI: 10.3390/resources2040581

Keywords: MIPS, lifecycle analysis, matrix computation, LCI algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Wuppertal Institute developed, in the early 1990s, an input-oriented lifecycle-wide resource accounting method, the “Material Input per Service-Unit” concept (MIPS), today also referred to as “Material Footprint”. The official handbook applicable to products, services, and processes describes a MS Excel-based sequential approach for calculating MIPS. Today’s computing power, available to every researcher, and access to software and databases dedicated to lifecycle analysis make calculating MIPS using matrix inversion possible. This also opens up possibilities for enhancing MIPS-models programmatically: parameterizing the foreground and background systems, batch modeling for producing time series, and computational algorithms enhancing interpretation. The article provides (1) an overview of the methods and tools used for calculating MIPS from its origins to today, and (2) demonstrates some of the programmatically enhanced capabilities offered to MIPS-practitioners.

References

[1]  Schmidt-Bleek, F. Wieviel Umwelt braucht der Mensch? MIPS—Das Ma? für ?kologisches Wirtschaften, 1st ed. ed.; Birkh?user Verlag: Basel, Switzerland, 1993.
[2]  Schmidt-Bleek, F. Das MIPS-Konzept, 1st ed. ed.; Droemer-Knaur-Verlag: Munich, Germany, 1998.
[3]  Vigon, B.W.; Tolle, D.A.; Cornaby, B.W.; Latham, H.C.; Harrison, C.L.; Boguski, T.L. Life Cycle Assessment: Inventory Guidelines and Principles. EPA/600/R-92/245; U.S. Environmental Protection Agency: Washington, DC, USA, 1993.
[4]  Guinée, J.B.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; van Oers, L.; Wegener Sleeswijk, A.; Suh, S.; Udo de Haes, H.A.; et al. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. In Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards; Kluwer Academic Publishers: Dordrecht, the Netherlands, 2002.
[5]  Bringezu, S.; Schütz, H.; Moll, S. Rationale for and interpretation of economy-wide materials flow analysis and derived indicators. J. Ind. Ecol. 2003, 7, 43–64, doi:10.1162/108819803322564343.
[6]  MIPS Online. Wuppertal Institute for Climate, Environment and Energy, Available online: http://wupperinst.org/en/projects/topics-online/mips/ (accessed on 23 July 2013).
[7]  Frischknecht, R.; Jungbluth, N.; Althaus, H.J.; Doka, G.; Dones, R.; Heck, T.; Hellweg, S.; Hischier, R.; Nemecek, T.; Rebitzer, G.; et al. Overview and Methodology—Data v2.0 (2007). ecoinvent Report No. 1; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2007.
[8]  Ritthoff, M.; Rohn, H.; Liedtke, C. Calculating MIPS—Resource Productivity of Products and Services. Wuppertal Spezial 27e; Wuppertal Institute for Climate, Environment and Energy: Wuppertal, Germany, 2002.
[9]  MIPS Calculation Sheet. MIPS Online. Wuppertal Institute for Climate, Environment and Energy, Available online: http://wupperinst.org/uploads/tx_wupperinst/MIPS_calculation-sheet.xls (accessed on 23 July 2013).
[10]  Material Intensity Factors. MIPS Online. Wuppertal Institute for Climate, Environment and Energy, Available online: http://wupperinst.org/uploads/tx_wupperinst/MIT_2011.pdf (accessed on 23 July 2013).
[11]  GaBi Software Homepage. Available online: http://www.gabi-software.com/international/index/ (accessed on 23 July 2013).
[12]  Heijungs, R. A generic method for the identification of options for cleaner products. Ecol. Econ. 1994, 10, 69–81, doi:10.1016/0921-8009(94)90038-8.
[13]  Suh, S.; Huppes, G. Methods for life cycle inventory of a product. J. Clean. Prod. 2005, 13, 687–697, doi:10.1016/j.jclepro.2003.04.001.
[14]  Suh, S.; Heijungs, R. Power series expansion and structural analysis for life cycle assessment. Int. J. Life Cycle Assess. 2007, 12, 381–390.
[15]  Bourgault, G.; Lesage, P.; Samson, R. Systematic disaggregation: A hybrid LCI computation algorithm enhancing interpretation phase in LCA. Int. J. Life Cycle Assess. 2012, 17, 774–786, doi:10.1007/s11367-012-0418-7.
[16]  Weisz, H.; Krausmann, F.; Eisenmenger, N.; Schütz, H.; Haas, W.; Schaffartzik, A. Economy—Wide Material Flow Accounting—“A Compilation Guide”; Eurostat: Luxembourg, 2007.
[17]  WRI Materials Flows Database. Available online: http://www.wri.org/publication/material-flow-accounts#database (accessed on 23 July 2013).
[18]  Wernick, I.K.; Irwin, F.H. Material Flows Accounts—A Tool for Making Environmental Policy. WRI Report; World Resource Institute: Washington, DC, USA, 2005.
[19]  Bundesanstalt für Geowissenschaften und Rohstoffe (BGR). Nickel—Geologisches Jahrbuch. Spezial Heft No. 7; BGR: Hannover, Germany, 1999.
[20]  Adriaanse, A.; Bringezu, S.; Hammond, A.; Moriguchi, Y.; Rodenburg, E.; Rogich, D.; Schütz, H. Resource Flows : The Material Basis of Industrial Economies; World Resource Institute: Washington, DC, USA, 1997.
[21]  Nemecek, T.; K?gi, T. Life Cycle Inventories of Agricultural Production Systems—Data v2.0 (2007). Ecoinvent Report No. 15; Swiss Centre for Life Cycle Inventories: Zürich, Switzerland, 2007.
[22]  Werner, F.; Althaus, H.J.; Künniger, T.; Richter, K.; Jungbluth, N. Life Cycle Inventories of Wood as Fuels and Construction Material—Data v2.0 (2007). Ecoinvent Report No. 9; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2007.
[23]  Goedkoop, M.; Heijungs, R.; Huijbregts, M.; de Schryver, A.; Struijs, J.; van Zelm, R. ReCiPe 2008—A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level—Report I: Characterisation; Ministry of Housing, Spatial Planning and Environment (VROM): The Hague, The Netherlands, 2009.
[24]  OpenLCA Home Page. Available online: http://www.openlca.org (accessed on 23 July 2013).
[25]  Scilab Home Page. Available online: http://www.scilab.org (accessed on 23 July 2013).
[26]  Lenzen, M. A guide for compiling inventories in hybrid life-cycle assessments: Some Australian results. J. Clean. Prod. 2002, 10, 545–572, doi:10.1016/S0959-6526(02)00007-0.
[27]  Peters, G.P.; Hertwich, E.G. Structural analysis of international trade: Environmental impacts of Norway. Econ. Sys. Res. 2006, 18, 155–181, doi:10.1080/09535310600653008.
[28]  Defourny, J.; Thorbecke, E. Structural path analysis and multiplier decomposition within a social accounting matrix framework. Econ. J. 1984, 94, 111–136, doi:10.2307/2232220.
[29]  Pehnt, M. Dynamic life cycle assessment (LCA) of renewable energy technologies. Renew. Energy 2006, 31, 55–71, doi:10.1016/j.renene.2005.03.002.
[30]  Zhai, P.; Williams, E.D. Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems. Environ. Sci. Technol. 2010, 44, 7950–7955, doi:10.1021/es1026695.
[31]  Collinge, W.O.; Landis, A.E.; Jones, A.K.; Schaefer, L.A.; Bilec, M.M. Dynamic life cycle assessment: Framework and application to an institutional building. Int. J. Life Cycle Assess. 2013, 18, 538–552, doi:10.1007/s11367-012-0528-2.
[32]  Suh, S. Input-output and hybrid life cycle assessment. Int. J. Life Cycle Assess. 2003, 8, 257, doi:10.1007/BF02978914.
[33]  Suh, S.; Lenzen, M.; Treloar, G.J.; Hondo, H.; Horvath, A.; Huppes, G.; Jolliet, O.; Klann, U.; Krewitt, W.; Moriguchi, Y.; et al. System boundary selection in life-cycle inventories using hybrid approaches. Environ. Sci. Technol. 2004, 38, 657–664, doi:10.1021/es0263745.
[34]  Suh, S.; Nakamura, S. Five years in the area of input-output and hybrid LCA. Int. J. Life Cycle Assess. 2007, 12, 351–352.
[35]  Finnveden, G.; Hauschild, M.Z.; Ekvall, T.; Guinée, J.; Heijungs, R.; Hellweg, S.; Koehler, A.; Pennington, D.; Suh, S. Recent developments in life cycle assessment. J. Environ. Manag. 2009, 91, 1–21, doi:10.1016/j.jenvman.2009.06.018.
[36]  Rowley, H.; Lundie, S.; Peters, G. A hybrid life cycle assessment model for comparison with conventional methodologies in Australia. Int. J. Life Cycle Assess. 2009, 14, 508–516, doi:10.1007/s11367-009-0093-5.
[37]  Suh, S. Functions, commodities and environmental impacts in an ecological-economic model. Ecol. Econ. 2004, 48, 451–467, doi:10.1016/j.ecolecon.2003.10.013.
[38]  Classen, M.; Althaus, H.J.; Blaser, S.; Scharnhorst, W.; Tuchschmid, M.; Jungbluth, N.; Emmenegger, M.F. Life Cycle Inventories of Metals—Data v2.0 (2007). Ecoinvent Report No. 10; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2007.
[39]  World Wide Fund for Nature (WWF). Modell Deutschland—Klimaschutz bis 2050: Vom Ziel her denken. Final Report; WWF Germany: Berlin, Germany, 2009.
[40]  The WIOD-Database. World input-output tables and international supply and use tables. Available online: http://www.wiod.org/protected3/data/wiot_analytic/wiot09_row_apr12.xlsx (accessed on 23 July 2013).
[41]  Timmer, M.; Erumban, A.A.; Gouma, R.; Los, B.; Temurshoev, U.; de Vries, G.J.; Arto, I.; Andreoni, V.; Genty, A.; Neuwahl, F.; et al. The World Input-Output Database (WIOD): Contents, Sources and Methods; University of Groningen: Groningen, The Netherlands, 2012.
[42]  Materials use-All countries; Environmental Accounts; The WIOD-Database. Available online: http://www.wiod.org/protected3/data/materials/mat_may12.zip (accessed on 23 July 2013).
[43]  Burger, P.; Bauer, C. Teil XIII—Windkraft—Data v2.0 (2007). Ecoinvent Report No. 6-XIII; Swiss Centre for Life Cycle Inventories: Villigen, Switzerland, 2007.
[44]  Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A. 2010 Cost of Wind Energy Review. Technical Report NREL/TP-5000-52920; National Renewable Energy Laboratory: Golden, CO, USA, 2012.
[45]  Wiedemann, T.O.; Suh, S.; Kuishuang, F.; Lenzen, M.; Acquaye, A.; Scott, K.; Barrett, J.R. Application of hybrid life cycle approaches to emerging energy technologies—The case of wind power in the UK. Environ. Sci. Technol. 2011, 45, 5900–5907, doi:10.1021/es2007287.
[46]  Williams, E.D.; Weber, C.L.; Hawkins, T.R. Hybrid framework for managing uncertainty in life cycle inventories. J. Ind. Ecol. 2009, 13, 928–944, doi:10.1111/j.1530-9290.2009.00170.x.
[47]  Mudd, G.M. The Sustainability of Mining in Australia: Key Production Trends and Their Environmental Implications for the Future. Research Report No. RR5; Department of Civil Engineering, Monash University and Mineral Policy Institute: Melbourne, Australia, 2009.
[48]  Exiobase Homepage. Available online: http://www.exiobase.eu (accessed on 23 July 2013).
[49]  Access workbooks by country; ESA 95 Supply Use and Input-Output tables; Eurostat. Available online: http://epp.eurostat.ec.europa.eu/portal/page/portal/esa95_supply_use_input_tables/data/workbooks (accessed on 23 July 2013).
[50]  Material flow accounts. Available online: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_ac_mfa&lang=en (accessed on 23 July 2013).
[51]  Watson, D.; Acosta Fernandez, J.; Wittmer, D.; Gravgard Pedersen, O. Environmental Pressures from European Consumption and Production : A Study in Integrated Environmental and Economic Analysis. EEA Technical Report No. 2/2013; European Environment Agency: Copenhagen, Denmark, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133