Do?ana National Park wetlands are located in southwest Spain, on the right bank of the Guadalquivir River, near the Atlantic Ocean coast. The wetlands dry out completely every summer and progressively flood again throughout the fall and winter seasons. Given the flatness of Do?ana’s topography, the wind drag action can induce the flooding or emergence of extensive areas, detectable in remote sensing images. Envisat/ASAR scenes acquired before and during strong and persistent wind episodes enabled the spatial delineation of the wind-induced water displacement. A two-dimensional hydrodynamic model of Do?ana wetlands was built in 2006 with the aim to predict the effect of proposed hydrologic restoration actions within Do?ana’s basin. In this work, on-site wind records and concurrent ASAR scenes are used for the calibration of the wind-drag modeling by assessing different formulations. Results show a good adjustment between the modeled and observed wind drag effect. Displacements of up to 2 km in the wind direction are satisfactorily reproduced by the hydrodynamic model, while including an atmospheric stability parameter led to no significant improvement of the results. Such evidence will contribute to a more accurate simulation of hypothetic or design scenarios, when no information is available for the atmospheric stability assessment.
References
[1]
García-Novo, F.; Marín-Cabrera, C. Do?ana: Agua y Biosfera; Ministerio de Medio Ambiente: Sevilla, Spain, 2005.
[2]
Gómez-Rodríguez, C.; Bustamante, J.; Díaz-Paniagua, C. Evidence of hydroperiod shortening in a preserved system of temporary ponds. Remote Sens 2010, 2, 1439–1462.
[3]
Suso, J.; Llamas, M.R. Influence of groundwater development on the Do?ana-National-Park ecosystems (Spain). J. Hydrol 1993, 141, 239–269.
[4]
Mun?oz-Reinoso, J.C. Vegetation changes and groundwater abstraction in SW Don?ana, Spain. J. Hydrol 2001, 242, 197–209.
[5]
Menanteau, L. Evolución Histórica y Consecuencias Morfológicas de la Intervención Humana en las Zonas Húmedas: El Caso de las Marismas del Guadalquivir. In Las Zonas Húmedas en Andalucía; Dirección General de Medio Ambiente, Ministerio de Obras Públicas y Urbanismo: Madrid, Spain, 1984; pp. 43–76.
[6]
Saura, J.; Bayán, B.; Casas, J.; Ruiz de Larramendi, A.; Urdiales, C. Documento Marco Para el Desarrollo del Proyecto Do?ana 2005. Regeneración Hídrica de las Cuencas y Cauces Vertientes a las Marismas del Parque Nacional de Do?ana; Ministerio de Medio Ambiente: Madrid, Spain, 2001.
[7]
Bladé-Castellet, E.; Gómez, M. Modelación del Flujo en Lámina Libre Sobre Cauces Naturales. Análisis Integrado en una y dos Dimensiones (Monografía CIMNE, 97); CIMNE: Barcelona, Spain, 2006.
[8]
European Space Agency. ASAR Product Handbook, Issue 2.2; ESA: Paris, France, 2007.
[9]
Marti-Cardona, B.; Lopez-Martinez, C.; Dolz-Ripolles, J.; Bladé-Castellet, E. ASAR polarimetric, multi-incidence angle and multitemporal characterization of Do?ana wetlands for flood extent monitoring. Remote Sens. Environ 2010, 114, 2802–2815.
[10]
Ferrarin, C.; Umgiesser, G.; Scroccaro, I.; Matassi, G. Hydrodynamic modeling of the lagoons of Marano and Grado, Italy. GeoEcoMarina 2009, 15, 13–19.
[11]
Kjerfve, B.; Magill, K.E. Geographic and hydrodynamic characteristics of shallow coastal lagoons. Mar. Geol 1989, 88, 187–199.
[12]
Pasternack, G.B.; Hinnov, L.A. Hydrometeorological controls on water level in a vegetated Chesapeake Bay tidal freshwater delta. Estuar. Coast. Shelf Sci 2003, 58, 367–387.
[13]
Reed, R.E.; Dickey, D.A.; Burkholder, J.M.; Kinder, C.A.; Brownie, C. Water level variations in the Neuse and Pamlico Estuaries, North Carolina due to local and remote forcing. Estuar. Coast. Shelf Sci 2008, 76, 431–446.
[14]
Ramos-Fuertes, A. Hidrometeorología y Balance Térmico de la Marisma de Do?anaPh.D. Thesis. Universitat Politècnica de Catalunya, Escola Tècnica Superior d’Enginyers de Camins, Canals i Ports de Barcelona, Barcelona, Spain, 2012.
[15]
Ji, Z.G.; Morton, M.R.; Hamrick, J.M. Wetting and drying simulation of estuarine processes. Estuar. Coast. Shelf Sci 2001, 53, 683–700.
[16]
Marti-Cardona, B.; Steissberg, T.E.; Schladow, S.G.; Hook, S.J. Relating fish kills to upwellings and wind patterns in the Salton Sea. Hydrobiologia 2008, 604, 85–95.
[17]
Mans, C.; Bramato, S.; Baquerizo, A.; Losada, M. Surface seiche formation on a shallow reservoir in complex terrain. J. Hydraul. Eng 2011, 137, 517–529.
[18]
Somes, N.L.G.; Bishop, W.A.; Wong, T.H.F. Numerical simulation of wetland hydrodynamics. Environ. Int 1999, 25, 773–779.
[19]
Min, J.; Wise, W.R. Depth-averaged, spatially distributed flow dynamic and solute transport modelling of a large-scaled, subtropical constructed wetland. Hydrol. Process 2010, 24, 2724–2737.
[20]
Markfort, C.D.; Perez, A.L.S.; Thill, J.W.; Jaster, D.A.; Porté-Agel, F.; Stefan, H.G. Wind sheltering of a lake by a tree canopy or bluff topography. Water Resour. Res 2010, 46, doi:10.1029/2009WR007759.
[21]
Cózar, A.; Gálvez, J.A.; Hull, V.; García, C.M.; Loiselle, S.A. Sediment resuspension by wind in a shallow lake of Esteros del Iberá (Argentina): A model based on turbidimetry. Ecol. Model 2005, 186, 63–76.
[22]
Zijlema, M.; van Vledder, G.P.; Holthuijsen, L.H. Bottom friction and wind drag for wave models. Coast. Eng 2012, 65, 19–26.
[23]
Martín, M.; López, J.A.; López, L.; Mantecón, R.; Cantos, R.; Coleto, I. Hidrogeologia del Parque Nacional de Don?ana y su entorno; Instituto Tecnoìlogico Geominero de Espan?a: Madrid, Spain, 1992.
[24]
Siljestr?m, P.; Clemente, L.; Rodriguez-Ramirez, A. Clima. In Parque Nacional de Do?ana; García Canseco, V., Ed.; Canseco Editores: Talavera de la Reina, Spain, 2002; pp. 43–56.
[25]
Bayán, B.J.; Dolz, J. Las aguas superficiales y la marisma del Parque Nacional de Do?ana. Revista de Obras Públicas 1995, 142, 17–29.
[26]
Aragonés, D.; Díaz-Delgado, R.; Bustamante, J. Tratamiento de una Serie Temporal Larga de Imágenes Landsat Para la Cartografía de la Inundación Histórica de las Marismas de Do?ana. Proceedings of the XI Congreso Nacional de Teledetección, Puerto de la Cruz, Tenerife, Spain, 21–23 September 2005; pp. 407–410.
[27]
García, J.I.; Mintegui, J.A.; Robredo, J.C. La Vegetación en la Marisma del Parque Nacional de Do?ana en Relación con su Régimen Hidráulico; Organismo Autónomo de Parques Nacionales: Madrid, Spain, 2005.
[28]
Salvia, M.; Franco, M.; Grings, F.; Perna, P.; Martino, R.; Karszenbaum, H.; Ferrazzoli, P. Estimating flow resistance of wetlands using SAR images and interaction models. Remote Sens 2009, 1, 992–1008.
Reschke, J.; Bartsch, A.; Schlaffer, S.; Schepaschenko, D. Capability of C-band SAR for operational wetland monitoring at high latitudes. Remote Sens 2012, 4, 2923–2943.
[31]
Kuenzer, C.; Guo, H.; Huth, J.; Leinenkugel, P.; Li, X.; Dech, S. Flood mapping and flood dynamics of the Mekong delta: ENVISAT-ASAR-WSM based time series analyses. Remote Sens 2013, 5, 687–715.
[32]
Kussul, N.; Shelestov, A.; Skakun, S. Flood Monitoring on the Basis of SAR Data. In Use of Satellite and in-situ Data to Improve Sustainability, NATO Science for Peace and Security Series C: Environmental Security; Kogan, F., Powell, A., Fedorov, O., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 19–29.
[33]
Skakun, S. A neural network approach to flood mapping using satellite imagery. Comput. Inform 2010, 29, 1013–1024.
[34]
Cossu, R.; Schoepfer, E.; Bally, P.; Fusco, L. Near real-time SAR-based processing to support flood monitoring. J. Real Time Image Process 2009, 4, 205–218.
[35]
Ramos, A.; Martí-Cardona, B.; Rabadà, J.; Dolz, J. Hydrometeorology and Heat Balance in a Shallow Wetland: Contribution of Field Data and Remote Sensing to the Understanding of Do?ana Marshes. Proceedings of the International Conference on Ecohydrology and Climate Change, Tomar, Portugal, 10–12 September 2009.
[36]
Rosich, B.; Meadows, P. Absolute Calibration of ASAR Level 1 Products Generated with PF-ASAR; ESA-ESRIN: Frascati, Italy, 2004.
[37]
Kozlov, I.E.; Kudryavtsev, V.N.; Johannessen, J.A.; Chapron, B.; Dailidiene, I.; Myasoedov, A.G. ASAR imaging for coastal upwelling in the Baltic Sea. Adv. Space Res 2012, 50, 1125–1137.
[38]
Marti-Cardona, B.; Dolz-Ripolles, J.; Lopez-Martinez, C. Wetland inundation monitoring by the synergistic use of ENVISAT/ASAR imagery and ancilliary spatial data. Remote Sens. Environ 2013, 139, 171–184.
[39]
Díaz-Delgado, R.; Bustamante, J.; Pacios, F.; Aragonés, D. Hydroperiod of Do?ana Marshes: Natural or Anthropic Origin of Inundation Regime? Proceedings of the 1st GlobWetland Symposium: Looking at Wetlands from Space, Frascati, Italy, 19–20 October 2006.
[40]
Marti-Cardona, B.; Dolz-Ripolles, J. On the Synergistic Use of Envisat/ASAR Imagery and Ancillary Spatial Data for Monitoring Do?ana Wetlands. Proceedings of the ESA Living Planet Symposium, Edinburgh, UK, 9–13 September 2013.
[41]
Marti-Cardona, B.; Dolz-Ripolles, J.; Lopez-Martinez, C. Imágenes SAR para la Cartografía de Do?ana: Beneficios del Filtrado Asistido por Información Espacial Auxiliar. Proceedings of the XV Congreso de la Asociación Espa?ola de Teledetección, Madrid, Spain, 22–24 October 2013.
[42]
Mahalanobis, P.C. On the generalized distance in statistics. Proc. Natl. Inst. Sci. (Calcutta) 1936, 2, 49–55.
[43]
Luque, C.J.; Rubio-Casal, A.E.; álvarez, A.A.; Mu?oz, J.; Vecino, I.; Doblas, D.; Leira, P.; Redondo, S.; Castillo, J.; Mateos, E.; et al. Memoria de Vegetación: Parque Nacional de Do?ana. Proyecto de Cartografía y Evaluación de la Flora y Vegetación Halófita y de los Ecosistemas de Marismas que se encuentren dentro de la Red de Espacios Naturales Protegidos de Andalucía; Consejería de Medio Ambiente de la Junta de Andalucía & Universidad de Sevilla: Sevilla, Spain, 2005.
[44]
García-Murillo, P.; Fernández-Zamudio, R.; Cirujano, S.; Sousa, S. Flora y vegetacioìn de la marisma de Don?ana en el marco del proyecto de restauracioìn ecoloìgica Don?ana 2005. Limnetica 2007, 2, 319–330.
[45]
Dolz, J.; Bladé Castellet, E.; Gili, J.A. Modelo Numérico de la Hidrodinámica de la Marisma de Do?ana. In Do?ana, Agua y Biosfera; García Novo, F., Marín Cabrera, C., Eds.; Confederación Hidrográfica del Guadalquivir, Ministerio de Medio Ambiente: Madrid, Spain, 2005; pp. 149–150.
[46]
Iberaula. Available online: http://www.iberaula.es (accessed on 6 May 2013).
[47]
Roe, P.L. Approximate Riemann, solvers, parameter vectors, and difference schemes. J. Comput. Phys 1981, 43, 357–372.
[48]
Vázquez-Cendón, M.E. Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys 1999, 148, 497–526.
[49]
Bladé, E.; Cea, L.; Corestein, G.; Escolano, E.; Puertas, J.; Vázquez-Cendón, E.; Dolz, J.; Coll, A. Iber—River modelling simulation tool. Revista Internacional de Métodos Numéricos para Cálculo y Dise?o en Ingeniería 2014, 30, 1–10.
[50]
Bladé, E.; Gómez-Valentín, M.; Dolz, J.; Aragón-Hernández, J.L.; Corestein, G.; Sánchez-Juny, M. Integration of 1D and 2D finite volume schemes for computations of water flow in natural channels. Adv. Water Resour 2012, 42, 17–29.
[51]
Munk, W.H. Wind stress on water: An hypothesis. Q. J. R. Meteorol. Soc 1955, 81, 320–332.
[52]
Van Dorn, W.G. Wind stress on an artificial pond. J. Mar. Res 1953, 12, 249–276.
[53]
Hsu, S.A.; Meindl, E.A.; Gilhousen, D.B. Determining the power-law wind-profile exponent under near-neutral stability conditions at sea. J. Appl. Meteorol 1994, 33, 757–765.
[54]
Arya, S.P. Introduction to Micrometeorology, 2nd ed. ed.; Academic Press: San Diego, CA, USA, 2001.
[55]
Charnock, H. Wind stress on a water surface. Q. J. R. Meteorol. Soc 1955, 81, 639–640.
[56]
Hsu, S.A. Estimating overwater friction velocity and exponent of power-law wind profile from gust factor during storms. J. Waterw. Port Coast. Ocean Eng 2003, 129, 174–177.
[57]
Donelan, M. The Dependence of the Aerodynamic Drag Coefficient on Wave Parameters. Proceedings of the First International Conference on Meteorology and Air-Sea Interaction of the Coastal Zone, The Hague, The Netherlands, 1982; pp. 381–387.
[58]
Bradley, E.F.; Coppin, P.A.; Godfrey, J.S. Measurements of sensible and latent heat flux in the western equatorial Pacific Ocean. J. Geophys. Res.: Ocean 1991, 96, 3375–3389.
[59]
Yelland, M.; Taylor, P.K. Wind stress measurements from the open ocean. J. Phys. Oceanogr 1996, 26, 541–558.
[60]
Mitsuta, Y.; Tsukamoto, O. Drag coefficients in light wind. Bull. Disaster Prev. Res. Inst 1978, 28, 25–32.
[61]
Wüest, A.; Lorke, A. Small-scale hydrodynamics in lakes. Annu. Rev. Fluid Mech 2003, 35, 373–412.
[62]
Ibá?ez, E. Validación de Modelos Digitales del Terreno de Precisión a Partir de Datos Láser Escáner Aerotransportado. Aplicación a la Marisma del Parque Nacional de Do?anaPh.D. Thesis. Universitat Politècnica de Catalunya, Escola Tècnica Superior d’Enginyers de Camins, Canals i Ports de Barcelona, Barcelona, Spain, 2008.
[63]
Prestininzi, P.; di Baldassarre, G.; Schumann, G.; Bates, P.D. Selecting the appropriate hydraulic model structure using low-resolution satellite imagery. Adv. Water Resour 2011, 34, 38–46.
[64]
Bates, P.D.; de Roo, A.P.J. A simple raster-based model for flood inundation simulation. J. Hydrol 2000, 236, 54–77.
[65]
Horritt, M.S.; Bates, P.D. Predicting floodplain inundation: Raster-based modelling versus the finite-element approach. Hydrol. Process 2001, 15, 825–842.