Rice crop monitoring is an important activity for crop management. This study aimed to develop a phenology-based classification approach for the assessment of rice cropping systems in Mekong Delta, Vietnam, using Moderate Resolution Imaging Spectroradiometer (MODIS) data. The data were processed from December 2000, to December 2012, using empirical mode decomposition (EMD) in three main steps: (1) data pre-processing to construct the smooth MODIS enhanced vegetation index (EVI) time-series data; (2) rice crop classification; and (3) accuracy assessment. The comparisons between the classification maps and the ground reference data indicated overall accuracies and Kappa coefficients, respectively, of 81.4% and 0.75 for 2002, 80.6% and 0.74 for 2006 and 85.5% and 0.81 for 2012. The results by comparisons between MODIS-derived rice area and rice area statistics were slightly overestimated, with a relative error in area (REA) from 0.9–15.9%. There was, however, a close correlation between the two datasets (R 2 ≥ 0.89). From 2001 to 2012, the areas of triple-cropped rice increased approximately 31.6%, while those of the single-cropped rain-fed rice, double-cropped irrigated rice and double-cropped rain-fed rice decreased roughly ?5.0%, ?19.2% and ?7.4%, respectively. This study demonstrates the validity of such an approach for rice-crop monitoring with MODIS data and could be transferable to other regions.
References
[1]
Global Climate Changes and Rice Food Security. Available online: http://www.hechoenperu.org.pe/fao/docs/Agriculture/3-Nguyen.pdf (accessed on 16 May 2013).
[2]
Timmer, C.P. A World without Agriculture: The Structural Transformation in Historical Perspective; American Enterprise Institute: Washington, DC, USA, 2009.
[3]
Evenson, R.E.; Gollin, D. Crop Varietal Improvement and Its Effects on Productivity: The Impact of International Agricultural Research; CABI Publishing: Wallingford, UK, 2003.
[4]
Metz, B.; Davidson, O.R.; Bosch, P.R.; Dave, R.; Meyer, L.A. Contribution of Working Groups I, II and III to the Fourth Assessement Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK and New York, NY, USA, 2007.
[5]
Furuya, J.; Kobayashi, S. Impact of Global Warming on Agricultural Product Markets: Stochastic World Food Model Analysis. In Adaptation and Mitigation Strategies for Climate Change; Sumi, A., Fukushi, K., Hiramatsu, A., Eds.; Springer: Japan: Tokyo, Japan, 2009; pp. 19–35.
[6]
Matthews, R.; Wassmann, R. Modelling the impacts of climate change and methane emission reductions on rice production: A review. Eur. J. Agron 2003, 19, 573–598.
[7]
Matthews, R.B.; Kropff, M.J.; Bachelet, D. Modeling the Impact of Climate Change on Rice Production in Asia; CAB International in association with the International Rice Research Institute: Wallingford, UK, 1995.
[8]
Matthews, R.B.; Kropff, M.J.; Horie, T.; Bachelet, D. Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation. Agric. Syst 1997, 54, 399–425.
[9]
Peng, S.; Huang, J.; Sheehy, J.E.; Laza, R.C.; Visperas, R.M.; Zhong, X.; Centeno, G.S.; Khush, G.S.; Cassman, K.G. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. U.S.A 2004, 101, 9971–9975.
[10]
Van Duivenbooden, N.; Abdoussalam, S.; Ben Mohamed, A. Impact of climate change on agricultural production in the sahel—Part 2. Case study for groundnut and cowpea in Niger. Clim. Chang 2002, 54, 349–368.
[11]
Chipanshi, A.C.; Chanda, R.; Totolo, O. Vulnerability assessment of the maize and sorghum crops to climate change in botswana. Clim. Chang 2003, 61, 339–360.
[12]
Ericson, J.P.; V?r?smarty, C.J.; Dingman, S.L.; Ward, L.G.; Meybeck, M. Effective sea-level rise and deltas: Causes of change and human dimension implications. Glob. Planet. Chang 2006, 50, 63–82.
[13]
OECD-FAO Agricultural Outlook 2006–2015. Available online: http://www.euroqualityfiles.net/Documents%20EUAM%20and%20CEECAP/Europe/Future%20policy/37038911.pdf (accessed on 16 September 2013).
GSO. Statistical Yearbook of Vietnam. Available online: http://www.gso.gov.vn (accessed on 10 November 2013).
[16]
Nguyen, V.N.; Do, M.H.; Nguyen, N.A.; Le, V.K. Rice Production in the Mekong Delta (Vietnam): Trends of Development and Diversification. Proceedings of the Mekong Rice Conference 2004: Rice the Environment, and Livelihoods for the Poor, Ho Chi Minh City, Vietnam, 15–17 October 2004.
[17]
Xiao, X.; Boles, S.; Frolking, S.; Li, C.; Babu, J.Y.; Salas, W.; Moore, B., III. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal modis images. Remote Sens. Environ 2006, 100, 95–113.
[18]
Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B., III. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ 2005, 95, 480–492.
[19]
Chen, C.F.; Son, N.T.; Chang, L.Y.; Chen, C.R. Classification of rice cropping systems by empirical mode decomposition and linear mixture model for time-series modis 250 m NDVI data in the Mekong Delta, Vietnam. Int. J. Remote Sens 2011, 32, 5115–5134.
[20]
Chen, C.F.; Son, N.T.; Chen, C.R.; Chang, L.Y. Wavelet filtering of time-series moderate resolution imaging spectroradiometer data for rice crop mapping using support vector machines and maximum likelihood classifier. J. Appl. Remote Sens 2011, 5, doi:10.1117/1.3595272.
[21]
Pittman, K.; Hansen, M.C.; Becker-Reshef, I.; Potapov, P.V.; Justice, C.O. Estimating global cropland extent with multi-year modis data. Remote Sens 2010, 2, 1844–1863.
[22]
Zhang, M.; Zhou, Q.; Chen, Z.; Liu, J.; Zhou, Y.; Cai, C. Crop discrimination in Northern China with double cropping systems using fourier analysis of time-series MODIS data. Int. J. Appl. Earth Obs. Geoinf 2008, 10, 476–485.
[23]
Canisius, F.; Turral, H.; Molden, D. Fourier analysis of historical NOAA time series data to estimate bimodal agriculture. Int. J. Remote Sens 2007, 28, 5503–5522.
[24]
Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ 2012, 123, 400–417.
[25]
Chen, C.-F.; Huang, S.-W.; Son, N.-T.; Chang, L.-Y. Mapping double-cropped irrigated rice fields in Taiwan using time-series satellite pour I’observation de la terre data. J. Appl. Remote Sens 2011, 5, doi:10.1117/1.3595276.
[26]
Galford, G.L.; Mustard, J.F.; Melillo, J.; Gendrin, A.; Cerri, C.C.; Cerri, C.E.P. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sens. Environ 2008, 112, 576–587.
[27]
Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 1998, 454, 903–995.
[28]
Huang, N.E.; Shen, S.S.P. Hilbert-Huang Transform and Its Applications; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2005.
[29]
Gumma, M.K.; Nelson, A.; Thenkabail, P.S.; Singh, A.N. Mapping rice areas of south asia using MODIS multitemporal data. J. Appl. Remote Sens 2011, 5, doi:10.1117/1.3619838.
[30]
Bridhikitti, A.; Overcamp, T.J. Estimation of Southeast Asian rice paddy areas with different ecosystems from moderate-resolution satellite imagery. Agric. Ecosyst. Environ 2012, 146, 113–120.
[31]
Bolstad, P.V.; Lillesand, T.M. Rapid maximum likelihood classification. Photogramm. Eng. Remote Sens 1991, 57, 67–74.
[32]
A Training Algorithm for Optimal Margin Classiers. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.1189&rep=rep1&type=pdf (accessed on 16 March 2013).
[33]
Benediktsson, J.A.; Swain, P.H.; Ersoy, O.K. Neural network approaches versus statistical methods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens 1989, 28, 540–552.
[34]
Deng, F.; Su, G.; Liu, C. Seasonal variation of MODIS vegetation indexes and their statistical relationship with climate over the subtropic evergreen forest in Zhejiang, China. IEEE Geosci. Remote Sens. Lett 2007, 4, 236–240.
[35]
Wang, Q.; Adiku, S.; Tenhunen, J.; Granier, A. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens. Environ 2005, 94, 244–255.
[36]
Stroppiana, D.; Boschetti, M.; Brivio, P.A.; Nizzetto, L.; di Guardo, A. Forest leaf area index in an alpine valley from medium resolution satellite imagery and in situ data. J. Appl. Remote Sens 2012, 6, doi:10.1117/1.JRS.6.063528.
[37]
Vi?a, A.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ 2011, 115, 3468–3478.
[38]
Boschetti, M.; Stroppiana, D.; Brivio, P.A.; Bocchi, S. Multi-year monitoring of rice crop phenology through time series analysis of MODIS images. Int. J. Remote Sens 2009, 30, 4643–4662.
[39]
Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ 2003, 84, 471–475.
[40]
Vina, A.; Gitelson, A.A.; Rundquist, D.C.; Keydan, G.; Leavitt, B.; Schepers, J. Monitoring maize (Zea mays L.) phenology with remote sensing. Agron. J 2004, 96, 1139–1147.
[41]
MODIS Land Surface Reflectance. Available online: http://modis-sr.ltdri.org (accessed on 16 February 2012).
[42]
Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sens. Environ 2007, 108, 290–310.
[43]
Thenkabail, P.S.; Schull, M.; Turral, H. Ganges and indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data. Remote Sens. Environ 2005, 95, 317–341.
[44]
Son, N.T.; Chen, C.F.; Chen, C.R.; Chang, L.Y. Satellite-based investigation of flood-affected rice cultivation areas in Chao Phraya River Delta, Thailand. ISPRS J. Photogramm. Remote Sens 2013, 86, 77–88.
[45]
Chen, C.F.; Chen, C.R.; Son, N.T. Investigating rice cropping practices and growing areas from MODIS data using empirical mode decomposition and support vector machines. GISci. Remote Sens 2012, 49, 117–138.
[46]
Salas, S.L.; Hille, E.; Etgen, G.J. Calculus: One and Several Variables, 10th ed. ed.; Wiley: Hoboken, NJ, USA, 2007.