This study compared three broadband emissivity (BBE) datasets from satellite observations. The first is a new global land surface BBE dataset known as the Global Land Surface Satellite (GLASS) BBE. The other two are the North American ASTER Land Surface Emissivity Database (NAALSED) BBE and University of Wisconsin Global Infrared Land Surface Emissivity Database (UWIREMIS) BBE, which were derived from two independent narrowband emissivity products. Firstly, NAALSED BBE was taken as the reference to evaluate the GLASS BBE and UWIREMIS BBE. The GLASS BBE was more close to NAALSED BBE with a bias and root mean square error (RMSE) of ?0.001 and 0.007 for the summer season, ?0.001 and 0.008 for the winter season, respectively. Then, the spatial distribution and seasonal pattern of global GLASS BBE and UWIREMIS BBE for six dominant land cover types were compared. The BBE difference between vegetated areas and non-vegetated areas can be easily seen from two BBEs. The seasonal variation of GLASS BBE was more reasonable than that of UWIREMIS BBE. Finally, the time series were calculated from GLASS BBE and UWIREMIS BBE using the data from 2003 through 2010. The periodic variations of GLASS BBE were stronger than those of UWIREMIS BBE. The long time series high quality GLASS BBE can be incorporated in land surface models for improving their simulation results.
References
[1]
Liang, S.; Wang, K.; Zhang, X.; Wild, M. Review of estimation of land surface radiation and energy budgets from ground measurements, remote sensing and model simulation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2010, 3, 225–240.
[2]
Zhou, L.; Goldberg, M.; Barnet, C.; Cheng, Z.; Sun, F.; Wolf, W.; King, T.; Liu, X.; Sun, H.; Divakarla, M. Regression of surface spectral emissivity from hyperspectral instruments. IEEE Trans. Geosci. Remote Sens 2008, 46, 328–333.
[3]
Vogel, R.L.; Liu, Q.-H.; Han, Y.; Wend, F.-Z. Evaluating a satellite-derived global infrared land surface emissivity data set for use in radiative transfer modeling. J. Geophys. Res 2011, 116, doi:10.1029/2010JD014679.
[4]
Dickinson, R.E. Land Processes in climate models. Remote Sens. Environ 1995, 51, 27–38.
[5]
Yu, Y.; Tarpley, D.; Privette, J.L.; Flynn, L.E.; Xu, H.; Chen, M.; Vinnikov, K.Y.; Sun, D.; Tian, Y. Validation of GOES-R satellite land surface temperature algorithm using SURFRAD ground measurements and statistical estimates of error properties. IEEE Trans. Geosci. Remote Sens 2012, 50, 704–713.
[6]
Cheng, J.; Liang, S.; Liu, Q.; Li, X. Temperature and emissivity separation from ground-based MIR hyperspectral data. IEEE Trans. Geosci. Remote Sens 2011, 49, 1473–1484.
[7]
Xue, Y.; Lawrence, S.P.; Llewellyn-Jones, D.T.; Mutlow, C.T. On the Earth’s surface energy exchange determination from ERS satellite ATSR data. Part I: Long-wave radiation. Int. J. Remote Sens 1998, 19, 2561–2583.
[8]
Zhou, J.; Chen, Y.; Zhang, X.; Zhan, W. Modelling the diurnal variations of urban heat islands with multi-source satellite data. Int. J. Remote Sens 2013, 34, 7568–7588.
[9]
Bonan, G.B.; Oleson, K.W.; Vertenstein, M.; Levis, S.; Zeng, X.; Dai, Y.; Dickinson, R.E.; Yang, Z. The land surface climatology of the community land model coupled to the NCAR community climate model. J. Clim 2002, 15, 3123–3149.
[10]
Jin, M.; Liang, S. An improved land surface emissivity parameter for land surface models using global remote sensing observations. J. Clim 2006, 19, 2867–2881.
[11]
Sellers, P.J.; Mintz, Y.; Sud, Y.C.; Dalcher, A. A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci 1986, 43, 505–531.
[12]
Zhou, L.; Dickinson, R.E.; Tian, Y.; Jin, M.; Ogawa, K.; Yu, H.; Schmugge, T. A sensitivity study of climate and energy blance simulations with use of satellite-based emissivity data over northern africa and the arabian peninsula. J. Geophys. Res 2003, 108, doi:10.1029/2003JD004083.
[13]
Wilber, A.C.; Kratz, D.P.; Gupta, S.K. Surface Emissivity Maps for Use in Satellite Retrievals of Longwave Radiation. NASA/TP-1999-209362;; NASA Langley Research Center: Hampton, VA, USA, 1999.
[14]
Ogawa, K.; Schmugge, T. Mapping surface broadband emissivity of the sahara desert using ASTER and MODIS data. Earth Interact 2004, 8, 1–14.
[15]
Ogawa, K.; Schmugge, T.; Rokugawa, S. Estimating broadband emissivity of arid regions and its seasonal variations using thermal infrared remote sensing. IEEE Trans. Geosci. Remote Sens 2008, 46, 334–343.
[16]
Peres, L.F.; DaCamara, C.C. Emissivity maps to retrieve land-surface temperature from MSG/SEVIRI. IEEE Trans. Geosci. Remote Sens 2005, 43, 1834–1844.
[17]
Cheng, J.; Liang, S.; Yao, Y.; Zhang, X. Estimating the optimal broadband emissivity spectral range for calculating surface longwave net radiation. IEEE Geosci. Remote Sens. Lett 2013, 10, 401–405.
[18]
Liang, S. Quantitative Remote Sensing of Land Surface; John Wiley and Sons, Inc: Hoboken, NJ, USA, 2004.
[19]
Hulley, G.C.; Hook, S.J. The North American ASTER Land Surface Emissivity Database (NAALSED) Version 2.0. Remote Sens. Environ 2009, 113, 1967–1975.
[20]
Seemann, S.W.; Borbas, E.E.; knuteson, R.O.; Stephenson, G.R.; Huang, H.-L. Development of a global infrared land surface emissivity database for application to clear sky sounding retrieval from multispectral satellite radiance measurements. J. Appl. Meteorol. Climatol 2008, 47, 108–123.
[21]
Capelle, V.; Chedin, A.; Pequignot, E.; Schlussel, P.; Newman, S.M.; Scott, S.A. Infrared continental surface emissivity spectra and skin temperature retrieved from IASI observations over the tropics. J. Appl. Meteorol. Climatol 2012, 51, 1164–1179.
[22]
Zhou, D.K.; Larar, A.M.; Liu, X.; Smith, W.L.; Strow, L.L.; Yang, P.; Schlussel, P.; Calbet, X. Global land surface emissivity retrieved from satellite ultraspectral IR measurements. IEEE Trans. Geosci. Remote Sens 2011, 49, 1227–1290.
[23]
Li, J.; Li, J.-L. Derivation of a global hyperspectral resolution surface emissivity spectra from advanced infrared sounder radiance measurements. Geophys. Res. Lett 2008, 35, L15807, doi:10.1029/2008GL034559.
[24]
susskind, J.; Blaisdell, J. Improved surface parameter retrievals using AIRS/AMSU data. Proc. SPIE 2008, 6966, doi:10.1117/1112.774759.
[25]
Aumann, H.; Chanhine, M.T.; Gautier, C. AIRS/AMSU/HSB on the AQUA mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens 2003, 41, 253–264.
[26]
Trigo, I.F.; Peres, L.F.; DaCamara, C.C.; Freitas, S.C. Thermal land surface emissivity retrieved from SEVIRI/Meteosat. IEEE Trans. Geosci. Remote Sens 2008, 46, 307–315.
[27]
Cheng, J.; Liang, S. Estimating the broadband longwave emissivity of global bare soil from the MODIS shortwave albedo product. J. Geophys. Res.: Atmos 2013, doi:10.1002/2013JD020689.
[28]
Cheng, J.; Liang, S. Estimating global land surface broadband thermal-infrared emissivity from the advanced very high resolution radiometer optical data. Int. J. Digit. Earth 2013, doi:10.1080/17538947.2013.783129.
[29]
Liang, S.; Zhao, X.; Liu, S.; Yuan, W.; Cheng, X.; Xiao, Z.; Zhang, X.; Liu, Q.; Cheng, J.; Tang, H.; et al. A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies. Int. J. Digit. Earth 2013, doi:10.1080/17538947.17532013.17805262.
[30]
Dong, L.X.; Hu, J.Y.; Tang, S.H.; Min, M. Field validation of GLASS land surface broadband emissivity database using pseudo-invariant sand dunes sites in northern China. Int. J. Digit. Earth 2013, doi:10.1080/17538947.17532013.17822573.
[31]
Liang, S.; Zhang, X.; Xiao, Z.; Cheng, J.; Liu, Q.; Zhao, X. Global LAnd Surface Satellite (GLASS) Products: Algorithm, Validation and Analysis; Springer: Berlin, Germany, 2013.
[32]
Ren, H.; Liang, S.; Yan, G.; Cheng, J. Empirical algorithms to map global broadband emissivities over vegetated surfaces. IEEE Trans. Geosci. Remote Sens 2013, 51, 2619–2631.
[33]
Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ 2009, 113, 711–715.
[34]
Cheng, J.; Liang, S.; Weng, F.; Wang, J.; Li, X. Comparison of radiative transfer models for simulating snow surface thermal infrared emissivity. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2010, 3, 323–336.
[35]
Hulley, G.C.; Hook, S.J. A new methodology for cloud detection and calssification with ASTER data. Geophys. Res. Lett 2008, 35, doi:10.1029/2008GL034644.
[36]
Hulley, G.C.; Hook, S.J.; Baldridge, A.M. Validation of the North American ASTER Land Surface Emissivity Database (NAALSED) version 2.0 using pseudo-invariant sand dune sites. Remote Sens. Environ 2009, 113, 2224–2233.
[37]
Hapke, B. Theory of Reflectance and Emittance Spectroscopy; Cambridge Unviersity Press: New York, NY, USA, 1993.
[38]
Cheng, J.; Liang, S. Effects of thermal-infrared emissivity directionality on surface broadband emissivity and longwave net radiation estimation. IEEE Geosci. Remote Sens. Lett 2014, 11, 499–503.
[39]
Du, Y.; Liu, Q.-H.; Chen, L.-F.; Liu, Q.; Yu, T. Modeling directional brightness temperature of the winter wheat canopy at the ear stage. IEEE Trans. Geosci. Remote Sens 2007, 45, 3721–3739.
[40]
Gillespie, A.R.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.J.; Kahle, A.B. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens 1998, 36, 1113–1126.
[41]
Gillespie, A.R.; Abbott, E.A.; Gilson, L.; Hulley, G.; Jimenez-Munoz, J.-C.; Sobrino, J.A. Residual errors in ASTER temperature and emissivity products AST08 and AST05. Remote Sens. Environ 2011, 115, 3681–3694.
[42]
Sabol, D.E., Jr.; Gillespie, A.R.; Abbott, E.; Yamada, G. Field validation of the ASTER Temperature-Emissivity Separation Algorithm. Remote Sens. Environ 2009, 113, 2328–2344.
[43]
Mira, M.; Schmugge, T.J.; Valor, E.; Caselles, V.; Coll, C. Analysis of ASTER emissivity product over an arid area in southern New Mexico, USA. IEEE Trans. Geosci. Remote Sens 2011, 49, 1316–1324.
[44]
Matsunaga, T.; Sawabe, Y.; Rokugawa, S.; Tonooka, H.; Moriyama, M. Early evaluation of ASTER emissivity products and its application to environmental and geologic studies. Proc. SPIE 2001, 4486, doi:10.1117/1112.455121.
[45]
Jimenez-Munoz, J.C.; Sobrino, J.A.; Gillespie, A.; Sabol, D.; Gustafson, W.T. Improved land surface emissivities over agricultural areas using ASTER NDVI. Remote Sens. Environ 2006, 103, 474–487.
[46]
Gustafson, W.T.; Gillespie, A.R.; Yamada, G.J. Revisions to the ASTER Temperature/Emissivity Separation Algorithm. In Second Recent Advances in Quantitative Remote Sensing; Sobrino, J.A., Ed.; Universitat de Valencia: Valencia, Spain, 2006; pp. 770–775.
[47]
Griend, A.A.V.D.; Owe, M. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. Int. J. Remote Sens 1993, 14, 1119–1131.
[48]
Valor, E.; Caselles, V. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sens. Environ 1996, 57, 167–184.
[49]
Snyder, W.C.; Wan, Z. BRDF modles to predict spectral reflectance and emissivity in the thermal infrared. IEEE Trans. Geosci. Remote Sens 1998, 36, 214–225.
[50]
Wang, K.; Liang, S. Evaluation of ASTER and MODIS land surface temperature and emissivity products usning long-term surface longwave radiation observations at SURFRAD sites. Remote Sens. Environ 2009, 113, 1556–1565.
[51]
French, A.N.; Schmugge, T.J.; Ritchie, J.C.; Hsu, A.; Jacob, F.; Ogawa, K. Detecting land cover change at the Jornada Experimental Rang, New Mexico with ASTER emissivities. Remote Sens. Environ 2008, 112, 1730–1748.
[52]
French, A.N.; Inamdar, A. Land cover characterization for hydrological modelling using thermal infrared emissivities. Int. J. Remote Sens 2010, 31, 3867–3883.