全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Potential of NPP-VIIRS Nighttime Light Imagery for Modeling the Regional Economy of China

DOI: 10.3390/rs5063057

Keywords: nighttime light, gross regional product, Visible Infrared Imaging Radiometer Suite, linear regression

Full-Text   Cite this paper   Add to My Lib

Abstract:

Historically, the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) was the unique satellite sensor used to collect the nighttime light, which is an efficient means to map the global economic activities. Since it was launched in October 2011, the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (NPP) Satellite has become a new satellite used to monitor nighttime light. This study performed the first evaluation on the NPP-VIIRS nighttime light imagery in modeling economy, analyzing 31 provincial regions and 393 county regions in China. For each region, the total nighttime light (TNL) and gross regional product (GRP) around the year of 2010 were derived, and a linear regression model was applied on the data. Through the regression, the TNL from NPP-VIIRS were found to exhibit R 2 values of 0.8699 and 0.8544 with the provincial GRP and county GRP, respectively, which are significantly stronger than the relationship between the TNL from DMSP-OLS (F16 and F18 satellites) and GRP. Using the regression models, the GRP was predicted from the TNL for each region, and we found that the NPP-VIIRS data is more predictable for the GRP than those of the DMSP-OLS data. This study demonstrates that the recently released NPP-VIIRS nighttime light imagery has a stronger capacity in modeling regional economy than those of the DMSP-OLS data. These findings provide a foundation to model the global and regional economy with the recently availability of the NPP-VIIRS data, especially in the regions where economic census data is difficult to access.

References

[1]  Henderson, V.; Storeygard, A.; Weil, D.N. A bright idea for measuring economic growth. Am. Econ. Rev 2011, 101, 194–199.
[2]  Chen, X.; Nordhaus, W.D. Using luminosity data as a proxy for economic statistics. Proc. Natl. Acad. Sci. USA 2011, 108, 8589–8594.
[3]  Deng, X.Z.; Huang, J.K.; Rozelle, S.; Uchida, E. Growth, population and industrialization, and urban land expansion of China. J. Urban Econ 2008, 63, 96–115.
[4]  Kumar, M.; Mukherjee, N.; Sharma, G.P.; Raghubanshi, A.S. Land use patterns and urbanization in the holy city of Varanasi, India: A scenario. Environ. Monit. Assess 2010, 167, 417–422.
[5]  Ghosh, T.; Powell, R.L.; Elvidge, C.D.; Baugh, K.E.; Sutton, P.C.; Anderson, S. Shedding light on the global distribution of economic activity. Open Geogr. J 2010, 3, 148–161.
[6]  Siebert, S.; Portmann, F.T.; Doll, P. Global patterns of cropland use intensity. Remote Sens 2010, 2, 1625–1643.
[7]  Bastiaanssen, W.G.M.; Molden, D.J.; Makin, I.W. Remote sensing for irrigated agriculture: Examples from research and possible applications. Agric. Water Manag 2000, 46, 137–155.
[8]  Churnside, J.H.; Brown, E.D.; Parker-Stetter, S.; Horne, J.K.; Hunt, G.L.; Hillgruber, N.; Sigler, M.F.; Vollenweider, J.J. Airborne remote sensing of a biological hot spot in the Southeastern Bering Sea. Remote Sens 2011, 3, 621–637.
[9]  Knudby, A.; Roelfsema, C.; Lyons, M.; Phinn, S.; Jupiter, S. Mapping fish community variables by integrating field and satellite data, object-based image analysis and modeling in a traditional Fijian fisheries management area. Remote Sens 2011, 3, 460–483.
[10]  Whitehurst, A.S.; Swatantran, A.; Blair, J.B.; Hofton, M.A.; Dubayah, R. Characterization of canopy layering in forested ecosystems using full waveform Lidar. Remote Sens 2013, 5, 2014–2036.
[11]  Doll, C.N.H.; Muller, J.-P.; Morley, J.G. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ 2006, 57, 75–92.
[12]  Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote Sens 1997, 18, 1373–1379.
[13]  Wang, W.; Cheng, H.; Zhang, L. Poverty assessment using DMSP/OLS night-time light satellite imagery at a provincial scale in China. Adv. Space Res 2012, 49, 1253–1264.
[14]  Ghosh, T.; Anderson, S.; Powell, R.L.; Sutton, P.C.; Elvidge, C.D. Estimation of Mexico’s informal economy and remittances using Nighttime Imagery. Remote Sens 2009, 1, 418–444.
[15]  Roychowdhury, K.; Jones, S.D.; Arrowsmith, C.; Reinke, K. A comparison of high and low gain DMSP/OLS satellite images for the study of socio-economic metrics. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens 2011, 4, 35–42.
[16]  Propastin, P.; Kappas, M. Assessing Satellite-observed nighttime lights for monitoring socioeconomic parameters in the Republic of Kazakhstan. GISci. Remote Sens 2012, 49, 538–557.
[17]  Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ 2012, 124, 99–107.
[18]  Kuechly, H.U.; Kyba, C.C.M.; Ruhtz, T.; Lindemann, C.; Wolter, C.; Fischer, J.; Holker, F. Aerial survey and spatial analysis of sources of light pollution in Berlin, Germany. Remote Sens. Environ 2012, 126, 39–50.
[19]  Levin, N.; Duke, Y. High spatial resolution night-time light images for demographic and socio-economic studies. Remote Sens. Environ 2012, 119, 1–10.
[20]  Letu, H.; Hara, M.; Tana, G.; Nishio, F. A saturated light correction method for DMSP/OLS nighttime satellite imagery. IEEE Trans. Geosci. Remote Sens 2012, 50, 389–396.
[21]  Lu, D.; Tian, H.; Zhou, G.; Ge, H. Regional mapping of human settlements in southeastern China with multisensor remotely sensed data. Remote Sens. Environ 2008, 112, 3668–3679.
[22]  Zhang, Q.L.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ 2011, 115, 2320–2329.
[23]  Zhang, Q.; Schaaf, C.; Seto, K.C. The vegetation adjusted NTL urban index: A new approach to reduce saturation and increase variation in nighttime luminosity. Remote Sens. Environ 2013, 129, 32–41.
[24]  National Bureau of Statistics of China. Urban Statistical Yearbook of China 2009–2010; China Statistical Press: Beijing, China, 2010–2011.
[25]  National Bureau of Statistics of China. China Statistical Yearbook for Regional Economy 2009–2010; China Statistical Press: Beijing, China, 2010–2011.
[26]  Letu, H.; Hara, M.; Yagi, H.; Naoki, K.; Tana, G.; Nishio, F.; Shuhei, O. Estimating energy consumption from night-time DMPS/OLS imagery after correcting for saturation effects. Int. J. Remote Sens 2010, 31, 4443–4458.
[27]  Elvidge, C.D.; Cinzano, P.; Pettit, D.R.; Arvesen, J.; Sutton, P.; Small, C.; Nemani, R.; Longcore, T.; Rich, C.; Safran, J.; Weeks, J.; Ebener, S. The Nightsat mission concept. Int. J. Remote Sens 2007, 28, 2645–2670.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133