全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

SVM-Based Classification of Segmented Airborne LiDAR Point?Clouds in Urban Areas

DOI: 10.3390/rs5083749

Keywords: airborne LiDAR, object-based classification, point clouds, segmentation, SVM

Full-Text   Cite this paper   Add to My Lib

Abstract:

Object-based point cloud analysis (OBPA) is useful for information extraction from airborne LiDAR point clouds. An object-based classification method is proposed for classifying the airborne LiDAR point clouds in urban areas herein. In the process of classification, the surface growing algorithm is employed to make clustering of the point clouds without outliers, thirteen features of the geometry, radiometry, topology and echo characteristics are calculated, a support vector machine (SVM) is utilized to classify the segments, and connected component analysis for 3D point clouds is proposed to optimize the original classification results. Three datasets with different point densities and complexities are employed to test our method. Experiments suggest that the proposed method is capable of making a classification of the urban point clouds with the overall classification accuracy larger than 92.34% and the Kappa coefficient larger than 0.8638, and the classification accuracy is promoted with the increasing of the point density, which is meaningful for various types of applications.

References

[1]  Filin, S.; Pfeifer, N. Segmentation of airborne laser scanning data using a slope adaptive neighborhood. ISPRS J. Photogramm 2006, 60, 71–80.
[2]  Sithole, G.; Vosselman, G. Experimental comparison of filter algorithms for bare earth extraction from airborne laser scanning point clouds. ISPRS J. Photogramm 2004, 59, 85–101.
[3]  Maas, H.G.; Vosselman, G. Two algorithms for extracting building models from raw laser altimetry data. ISPRS J. Photogramm 1999, 54, 153–163.
[4]  Oude Elberink, S.; Vosselman, G. 3D information extraction from laser point clouds covering complex road junctions. Photogramm. Rec 2009, 24, 23–36.
[5]  Hyypp?, J.; Schardt, M.; Haggrén, H.; Koch, B.; Lohr, U.; Scherrer, H.U.; Paananen, R.; Luukkonen, H.; Ziegler, M.; Hyypp?, H.; et al. HIGH-SCAN: The first European-wide attempt to derive single tree information from laser scanner data. Photogram. J. Finl 2001, 17, 58–68.
[6]  Ussyshkin, V.; Theriault, L. Airborne Lidar: Advances in discrete return technology for 3D vegetation mapping. Remote Sens 2011, 3, 416–434.
[7]  Zhang, J. Multi-source remote sensing data fusion: status and trends. Int. J. Image Data Fusion 2010, 1, 5–24.
[8]  Antonarakis, A.S.; Richards, K.S.; Brasington, J. Object-based land cover classification using airborne LiDAR. Remote. Sens. Environ 2008, 112, 2988–2998.
[9]  Fricker, G.A.; Saatchi, S.S.; Meyer, V.; Gillespie, T.W.; Sheng, Y. Application of semi-automated filter to improve waveform LiDAR sub-canopy elevation model. Remote Sens 2012, 4, 1494–1518.
[10]  Mallet, C.; Bretar, F.; Soergel, U. Analysis of full waveform LIDAR data for classification of urban areas. Photogramm. Fernerkun 2008, 5, 337–349.
[11]  Rutzinger, M.; H?fle, B.; Hollaus, M.; Pfeifer, N. Object-Based point cloud analysis of full-waveform airborne laser scanning data for urban vegetation classification. Sensors 2008, 8, 4505–4528.
[12]  Huang, X.; Zhang, L.P.; Gong, W. Information fusion of aerial images and LIDAR data in urban areas: vector-stacking, re-classification and post-processing approaches. Int. J. Remote. Sens 2011, 32, 69–84.
[13]  Secord, J.; Zakhor, A. Tree detection in urban regions using aerial LiDAR and image data. IEEE. Geosci Remote Sens 2007, 4, 196–200.
[14]  Rottensteiner, F.; Trinder, J.; Clode, S.; Kubik, K. Building detection by fusion of airborne laser scanner data and multi-spectral images: performance evaluation and sensitivity analysis. ISPRS J. Photogramm 2007, 62, 135–149.
[15]  Zhu, X.K.; Toutin, T. Land cover classificationusing airborne LiDAR products in Beauport, Québec, Canada. Int. J. Image Data Fusion 2012, doi:10.1080/19479832.2012.734339.
[16]  Liu, X. Airborne LiDAR for DEM generation: some critical issues. Progr. Phys. Geogr 2008, 32, 31–49.
[17]  Axelsson, P.E. DEM generation from laser scanner data using adaptive TIN models. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2000, 32, 110–117.
[18]  Zhang, J.X.; Lin, X.G. Filtering airborne LiDAR data by embedding smoothness-constrained segmentation in progressive TIN densification. ISPRS J. Photogramm 2013, 81, 44–59.
[19]  Kraus, K.; Pfeifer, N. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J. Photogramm. 1998, 53, 193–203.
[20]  Briese, C.; Pfeifer, N.; Dorninger, P. Applications of the robust interpolation for DTM determination. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2002, 34, 55–61.
[21]  Darmawati, A.T. Utilization of Multiple Echo Information for Classification of Airborne Laser Scanning DataM.Sc. Thesis. International Institute for Geo-information Science and Observation, Enschede, The Netherlands, 2008.
[22]  Meng, X.; Wang, L.; Currit, N. Morphology-based building detection from airborne Lidar data. Photogramm. Eng. Remote Sensing 2009, 75, 437–442.
[23]  Yao, W.; Hinz, S.; Stilla, U. Extraction and motion estimation of vehicles in single-pass airborne LiDAR data towards urban traffic analysis. ISPRS J. Photogramm 2011, 66, 260–271.
[24]  Oude Elberink, S.; Mass, H.G. The use of anisotropic height texture measurements for the segmentation of ariborne laser scanner data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2000, 33, 678–684.
[25]  Shan, J.; Sampath, A. Urban DEM generation from raw Lidar data: a labeling algorithm and its performance. Photogramm. Eng. Remote Sensing 2005, 71, 217–226.
[26]  Tinkham, W.T.; Huang, H.; Smith, A.M.S.; Shrestha, R.; Falkowski, M.J.; Hudak, A.T.; Link, T.E.; Glenn, N.F.; Marks, D.G. A Comparison of two open source LiDAR surface classification algorithms. Remote Sens 2011, 3, 638–649.
[27]  Petzold, B.; Axelsson, P. Result of the OEEPE WG on Laser data acquisition. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2000, 33, 718–723.
[28]  Brovelli, M.A.; Cannata, M.; Longoni, U.M. Managing and Processing LIDAR Data within GRASS. Proceedings of Open Source GIS: GRASS Users Conference, Trento, Italy, 11–13 September 2002.
[29]  Shen, J.; Liu, J.P.; Lin, X.G.; Zhao, R. Object-based classification of airborne light detection and ranging point clouds in human settlements. Sensor Lett 2012, 10, 221–229.
[30]  Sithole, G. Segmentation and Classification of Airborne Laser Scanner DataPh.D Thesis. Netherlands Commission of Geodesy, Delft, The Netherlands, 2005.
[31]  Golovinskiy, A.; Kim, V.G.; Funkhouser, T. Shape-based Recognition of 3D Point Clouds in Urban Environments. Proceedings of the 12th International Conference on Computer Vision (ICCV09), Kyoto, Japan, 27 September–4 October 2009; pp. 2154–2161.
[32]  Barsi, á. Object detection using neural self-organization. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2004, 35, 366–371.
[33]  Benz, U.C.; Peter, H.; Gregor, W.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm 2004, 58, 239–258.
[34]  Silván-Cárdenas, J.L.; Wang, L. A multi-resolution approach for filtering LiDAR altimetry data. ISPRS J. Photogramm. 2006, 61, 11–22.
[35]  Vosselman, G.; Klein, R. Visualization and Structuring of Point Clouds. In Airborne and Terrestrial Laser Scanning, 1st ed; Vosselman, G., Maas, H.G., Eds.; Whittles Publising: Dunbeath, UK, 2010; pp. 43–79.
[36]  Melzer, T. Non-parametric segmentation of ALS point clouds using mean shift. J. Appl. Geod 2007, 1, 159–170.
[37]  Wang, M.; Tseng, Y.H. Automatic segmentation of LiDAR data into coplanar point clusters using an octree-based split-and-merge algorithm. Photogramm. Eng. Remote Sensing 2010, 76, 407–420.
[38]  Vosselman, G.; Gorte, B.G.H.; Sithole, G.; Rabbani, T. Recognizing structure in laser scanner point clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2004, 36, 33–38.
[39]  Rabbani, T. Automatic Reconstruction of Industrial Installations Using Point Clouds and IimagesPh.D. Thesis. Netherlands Commission of Geodesy, Delft, The Netherlands, 2006.
[40]  Edelsbrunner, H.; Kirkpatrick, D.; Seidel, R. On the shape of a set of points in the plane. IEEE T. Inform. Theory 1983, 29, 551–559.
[41]  Arya, S.; Mount, D.M.; Netanyahu, N.S.; Silverman, R.; Wu, A.Y. An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. J. ACM 1998, 45, 891–923.
[42]  Lalonde, J.-F.; Vandapel, N.; Huber, D.; Hebert, M. Natural terrain classification using three-dimensional ladar data for ground robot mobility. J. Field. Robot 2006, 23, 839–861.
[43]  Hug, C.; Wehr, A. Detecting and identifying topographic objects in imaging laser altimeter data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 1997, 32, 19–26.
[44]  Vapnik, V. The Nature of Statistical Learning Theory; Springer-Verlag: New York, NY, USA, 1995.
[45]  Samet, H.; Tamminen, M. Efficient component labeling of images of arbitrary dimension represented by linear bintrees. IEEE T. Pattern Anal 1988, 10, 579–586.
[46]  A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator. Available online: http://www.cs.cmu.edu/~quake/triangle.html (accessed on 11 October, 2011).
[47]  Chang, C.C.; Lin, C.J. LIBSVM: A Library for Support Vector Machines, 2001. http://www.csie.ntu.edu.tw/~cjlin/libsvm (accessed on 15 March 2010).
[48]  ANN: A Library for Approximate Nearest Neighbor Searching. Available online: http://www.cs.umd.edu/~mount/ANN/ (accessed on 15 March 2010).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133