The detection and monitoring of mass movement of susceptible slopes plays a key role in mitigating hazards and potential damage associated with creeping slopes and landslides. In this paper, we use observations from both Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) to assess the slope stability of the Sarcheshmeh ancient landslide in the North Khorasan province of northeast Iran. InSAR observations were obtained by the time-series analysis of Envisat SAR images covering 2004–2006, whereas repeated GPS observations were conducted by campaign measurements during 2010–2012. Surface displacement maps of the Sarcheshmeh landslide obtained from InSAR and GPS are both indicative of slope stability. Hydrogeological analysis suggests that the multi-year drought and lower than average precipitation levels over the last decade might have contributed to the current dormancy of the Sarcheshmeh landslide.
References
[1]
Sidle, R.C.; Ochiai, H. Landslides: Processes, Prediction, and Land Use; American Geophysical Union: Washington, DC, USA, 2006; Volume 18, p. 312.
[2]
Landslide in Iran, Available online: http://landslide.ir (accessed on 20 December 2012).
[3]
National Geoscience Database of Iran, Available online: http://www.ngdir.ir/landslide/LandSlideInfo.asp (accessed on 20 December 2012).
[4]
Greif, V.; Vlcko, J. Monitoring of post-failure landslide deformation by the PS-InSAR technique at Lubietova in Central Slovakia. Environ. Earth Sci 2012, 66, 1585–1595.
[5]
Malet, J.-P.; Maquaire, O.; Calais, E. The use of Global Positioning System techniques for the continuous monitoring of landslides: Application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology 2002, 43, 33–54.
[6]
Brückl, E.; Brunner, F.; Kraus, K. Kinematics of a deep-seated landslide derived from photogrammetric, GPS and geophysical data. Eng. Geol 2006, 88, 149–159.
Strozzi, T.; Ambrosi, C.; Raetzo, H. Interpretation of aerial photographs and satellite SAR interferometry for the inventory of landslides. Remote Sens 2013, 5, 2554–2570.
[9]
Kimura, H.; Yamaguchi, Y. Detection of landslide areas using satellite radar interferometry. Photogramm. Eng. Remote Sensing 2000, 66, 337–344.
[10]
Lacroix, P.; Zavala, B.; Berthier, E.; Audin, L. Supervised method of landslide inventory using panchromatic SPOT5 images and application to the earthquake-triggered landslides of Pisco (Peru, 2007, Mw8.0). Remote Sens 2013, 5, 2590–2616.
[11]
Othman, A.A.; Gloaguen, R. River courses affected by landslides and implications for hazard assessment: A high resolution remote sensing case study in NE Iraq–W Iran. Remote Sens 2013, 5, 1024–1044.
[12]
National Aeronautics and Space Administration. Rainfall Analysis Tools, Available online: http://disc2.nascom.nasa.gov/Giovanni/tovas/rain.GPCP.2.shtml (accessed on 11 January 2013).
[13]
Water Science, Available online: http://waterscience.blogfa.com (accessed on 20 December 2012).
[14]
Geological Survey of Iran. States Information, Available online: http://gsi.ir/States/Lang_en/StateId_51/Action_LastUpdate/index.html (accessed on 25 June 2011).
[15]
Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Kluwer Academic Publishers: New York, NY, USA, 2001.
[16]
Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys 1998, 36, 441–500.
[17]
Strozzi, T.; Farina, P.; Corsini, A.; Ambrosi, C.; Thüring, M.; Zilger, J.; Wiesmann, A.; Wegmüller, U.; Werner, C. Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides 2005, 2, 193–201.
[18]
Tantianuparp, P.; Shi, X.; Zhang, L.; Balz, T.; Liao, M. Characterization of landslide deformations in three gorges area using multiple InSAR data stacks. Remote Sens 2013, 5, 2704–2719.
[19]
Motagh, M.; Wetzel, H.-U.; Roessner, S.; Kaufmann, H. A TerraSAR-X InSAR study of landslides in southern Kyrgyzstan, Central Asia. Remote Sens. Lett 2013, 4, 657–666.
[20]
Rott, H.; Scheuchl, B.; Siegel, A.; Grasemann, B. Monitoring very slow slope movements by means of SAR interferometry: A case study from a mass waste above a reservoir in the ?tztal Alps, Austria. Geophys. Res. Lett 1999, 26, 1629–1632.
[21]
Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, doi:10.1029/2004GL021737.
[22]
Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. 2007, 112, doi:10.1029/2006JB004763.
[23]
Tofani, V.; Raspini, F.; Catani, F.; Casagli, N. Persistent Scatterer Interferometry (PSI) technique for landslide characterization and monitoring. Remote Sens 2013, 5, 1045–1065.
[24]
Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens 2002, 40, 2375–2383.
[25]
Lanari, R.; Casu, F.; Manzo, M.; Zeni, G.; Berardino, P.; Manunta, M.; Pepe, A. An overview of the small baseline subset algorithm: A DInSAR technique for surface deformation analysis. Pure Appl. Geophys 2007, 164, 637–661.
[26]
Akbari, V.; Motagh, M. Improved ground subsidence monitoring using small baseline SAR interferograms and a weighted least squares inversion algorithm. IEEE Geosci. Remote Sens. Lett 2012, 9, 437–441.
[27]
Hofmann-Wellenhof, B.; Lichtenegger, H.; Collins, J. Global Positioning System. Theory and Practice; Springer: Wien, Austria, 1993; p. 347.
[28]
Zhou, P.; Zhou, B.; Guo, J.; Li, D.; Ding, Z.; Feng, Y. A demonstrative GPS-aided automatic landslide monitoring system in sichuan province. J. Glob. Position. Syst 2005, 4, 184–191.
[29]
Gili, J.A.; Corominas, J.; Rius, J. Using Global Positioning System techniques in landslide monitoring. Eng. Geol 2000, 55, 167–192.
[30]
Squarzoni, C.; Delacourt, C.; Allemand, P. Differential single-frequency GPS monitoring of the La Valette landslide (French Alps). Eng. Geol 2005, 79, 215–229.
[31]
Motagh, M.; Djamour, Y.; Walter, T.R.; Wetzel, H.U.; Zschau, J.; Arabi, S. Land subsidence in Mashhad Valley, northeast Iran: Results from InSAR, levelling and GPS. Geophys. J. Int 2006, 168, 518–526.
[32]
Yin, Y.; Zheng, W.; Liu, Y.; Zhang, J.; Li, X. Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China. Landslides 2010, 7, 359–365.
[33]
Strozzi, T.; Delaloye, R.; K??b, A.; Ambrosi, C.; Perruchoud, E.; Wegmüller, U. Combined observations of rock mass movements using satellite SAR interferometry, differential GPS, airborne digital photogrammetry, and airborne photography interpretation. J. Geophys. Res. 2010, 115, doi:10.1029/2009JF001311.
[34]
Kampes, B.; Hanssen, R.; Perski, Z. Radar Interferometry with Public Domain Tools. Proceedings of FRINGE, ESA ESRIN, Frascati, Italy, 1–5 December 2003; Available online: http://earth.esa.int/fringe03/proceedings/papers/22_kampes.pdf (accessed on 25 May 2013).
[35]
Farr, T.G.; Kobrick, M. The shuttle radar topography mission. Rev. Geophys 2007, 45, doi:10.1029/2005RG000183.
[36]
Scharroo, R.; Visser, P. Precise orbit determination and gravity field improvement for the ERS satellites. J. Geophys. Res 1998, 103, 8113–8127.
[37]
Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35, doi:10.1029/2008GL034654.
[38]
National Geodetic Survey. GPS Orbit Data, Available online: http://www.ngs.noaa.gov/orbits/orbit_data.shtml (accessed on 30 November 2012).
[39]
Wesche, C.; Eisen, O.; Oerter, H.; Schulte, D.; Steinhage, D. Surface topography and ice flow in the vicinity of the EDML deep-drilling site, Antarctica. J. Glaciol 2007, 53, 442–448.
[40]
Lowry, A.R.; Hamburger, M.W.; Meertens, C.M.; Ramos, E.G. GPS monitoring of crustal deformation at Taal Volcano, Philippines. J. Volcanol. Geotherm. Res 2001, 105, 35–47.
[41]
Hessami, K.; Nilforoushan, F.; Talbot, C.J. Active deformation within the Zagros mountains deduced from GPS measurements. J. Geol. Soc 2006, 163, 143–148.
[42]
McClusky, S.; Balassanian, S.; Barka, A.; Demir, C.; Ergintav, S.; Georgiev, I.; Veis, G. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res.-Solid Earth 2000, 105, 5695–5719.
[43]
Langbein, J. Noise in GPS displacement measurements from Southern California and Southern Nevada. J. Geophys. Res.-Solid Earth 2008, 113, doi:10.1029/2007JB005247.
[44]
Casu, F.; Manzo, M.; Lanari, R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens. Environ 2006, 102, 195–210.
[45]
Iran Water Resources Management Company. North Khorasan Province, Available online: http://wnkh.ir/showpage.aspx?pgid=8&ids=29&? (accessed on 11 January 2013).