Detection and Monitoring of Surface Motions in Active Open Pit Iron Mine in the Amazon Region, Using Persistent Scatterer Interferometry with TerraSAR-X Satellite Data
Persistent Scatterer interferometry (PSI) represents a powerful tool for the detection and monitoring of tiny surface deformations in vast areas, allowing a better understanding of its triggering mechanisms, planning of mitigation measures, as well as to find better solutions for social and environmental issues. However, there is no record hitherto of its use in active open pit mine in tropical rainforest environment. In this paper we evaluate the use of the PSI technique for the detection and monitoring of mine slope deformations in the N4W iron mine and its surroundings, Pará State, Northern Brazil. The PSI processing was performed with 18 ascending SAR scenes of the TerraSAR-X satellite acquired in the dry season of 2012. The results showed a significant number of widely distributed persistent scatterers. It was observed that most of the study area was stable during the time span. Nevertheless, high deformation rates (312 mm/year) were mapped over the mine waste piles, but do not offer any hazard, since they are expected displacements of meters in magnitude for these manmade land structures. Additionally, it was mapped tiny deformation rates in both the east and west flanks of pits 1 and 2. The main underlying reasons can be assigned to the accommodation phenomena of very poor rock masses, to the local geometric variations of the slope cuts, to the geological contact between ironstones and the country rocks, to the exploitation activities, as well as to the major geological structures. This study showed the applicability of the PSI technique using TerraSAR-X scenes in active open pit mines in tropical moist environment. However, the PSI technique is not capable in providing real-time warnings, and faces limitations due to SAR viewing geometry. In this sense, we strongly recommend the use of radar scenes acquired in both ascending and descending orbits, which would also provide a more complete understanding of the deformation patterns.
References
[1]
Instituto Brasileiro de Minera??o. Informa??es e Análises da Economia Mineral Brasileira, 6th ed ed.; IBRAM: Brasília, Brazil, 2011.
[2]
Sá, G.; Soares, F.; Pires, M.H.A. Condicionantes de Ruptura na Mina de N4WN, Carajás-PA. Proceedings of Anais do 12° Congresso Brasileiro de Geologia de Engenharia e Ambiental, Porto de Galinhas, Brazil, 23–27 November 2008.
[3]
Wieczorek, G.F.; Snyder, J.B. Monitoring Slope Movements. In Geological Monitoring; Young, R., Norby, L., Eds.; Geological Society of America: Boulder, CO, USA, 2009; pp. 245–271.
[4]
Berardino, P.; Costantini, M.; Franceschetti, G.; Iodice, A.; Pietranera, l.; Rizzo, V. Use of differential SAR interferometry in monitoring and modelling large slope instability at Maratea (Basilicata, Italy). Eng. Geol 2003, 68, 31–51.
[5]
Raucoules, D.; Maisons, C.; Carnec, C.; le Movelic, S.; King, C.; Hosford, S. Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert Salt Mine (France): comparison with ground-based measurement. Remote Sens. Environ 2003, 88, 468–478.
[6]
Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens 2001, 39, 8–19.
[7]
Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in Differential SAR Interferometry. IEEE Trans. Geosci. Remote Sens 2000, 38, 2202–2212.
[8]
Farina, P.; Colombo, D.; Fumagalli, A.; Marks, F.; Moretti, S. Permanent Scatterers for landslide investigations: outcomes from the ESA-SLAM Project. Eng. Geol 2006, 88, 200–217.
[9]
Rott, H.; Nagler, T. The contribution of radar interferometry to the assessment of landslide hazards. Adv. Space Res 2006, 37, 710–719.
[10]
Colesanti, C.; Wasowski, J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Eng. Geol 2006, 88, 173–199.
[11]
Strozzi, T.; Farina, P.; Corsini, A.; Ambrosi, C.; Thuring, M.; Zilger, J.; Wiesmann, A.; Wegmuller, U.; Werner, C. Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslide 2005, 2, 193–201.
[12]
Hilley, G.E.; Bürgmann, R.; Ferretti, A.; Novali, F.; Rocca, F. Dynamics of slow-moving landslides from permanente scatterer analysis. Science 2004, 304, 1952–1955.
[13]
Colesanti, C.; Ferretti, A.; Prati, C.; Rocca, F. Monitoring landslides and tectonic motion with the Permanent Scatterers technique. Eng. Geol 2003, 68, 3–14.
[14]
Kimura, H; Yamaguchi, Y. Detection of landslide areas using satellite radar interferometry. Photogramm. Eng. Remote Sens 2000, 66, 337–344.
[15]
BVP Engenharia LTDA. Mapeamento Litoestrutural e Litogeomecanico da Mina N4WN. Relatório Interno-VL 070-10-E-CA-RT-03-55-00;; BVP Engenharia LTDA: Belo Horizonte. Brazil, 2009; p. 75.
[16]
DOCEGEO. Revis?o litoestratigráfica da Província Mineral de Carajás. Proceedings of Anais do XXXV Congresso Brasileiro de Geologia, Belém, Brazil, 6–13 November 1988; pp. 11–54.
[17]
Gibbs, A.G.; Wirth, K.R.; Hirata, W.K.; Olszewski, W.J. Age and composition of the Gr?o-Pará Group volcanics, Serra dos Carajás. Revista Brasileira de Geociências 1986, 16, 201–211.
[18]
Faraco, M.T.L.; Marinho, P.A.C.; Vale, A.G.; Costa, E.J.S.; Maia, R.G.N.; Ferreira, A.L.; Valente, C.R.; Lacerda Filho, J.V.; Moreton, I.C.; Camargo, M.A.; et al. Folha SB.22-Araguaia. In Carta Geológica do Brasil ao Milionésimo, Sistema de Informa??es Geográficas; Schobbenhaus, C., Gon?alves, J.H., Santos, J.O.S., Abram, M.B., Le?o Neto, R., Matos, G.M.M., Vidotti, R.M., Ramos, M.A.B., Jesus, J.D.A., Eds.; CPRM, Programa Geologia do Brasil: Brasília, Brazil, 2004. CD-ROM..
[19]
Veneziani, P.; Santos, A.R.; Paradella, W.R. A evolu??o tectono-estratigráfica da Província Mineral de Carajás: um modelo com base em dados de sensores remotos orbitais (SAR-C RADARSAT-1, TM-Landsat-5), aerogeofísica e dados de campo. Revista Brasileira de Geociências 2004, 34, 67–78.
[20]
Beisiegel, V.R.; Bernardelli, A.L.; Drummond, N.F.; Ruff, A.W.; Tremaine, J.W. Geologia e recursos minerais da Serra dos Carajás. Revista Brasileira de Geociências 1973, 3, 215–242.
[21]
Araújo, O.J.B.; Maia, R.G.N.; Jo?o, X.S.J.; Costa, J.B.S. A megaestrutura??o Arqueana da Folha Serra dos Carajás. Proceedings of Anais do VII Congresso Latino-Americano de Geologia, Belém, Brazil, 6–13 November 1988; pp. 324–338.
[22]
Pinheiro, R.V.L.; Holdsworth, R.E. The structure of the Carajás N-4 Ironstone deposit and associated rocks: relationship to Archean strike-slip tectonics and basement reactivation in Amazon region, Brazil. J. South Amer. Earth Sci 1997, 10, 305–319.
[23]
Costa, J.B.S.; Araujo, J.B.; Santos, A.; Jorge Joao, X.S.; Macambira, M.J.B.; Lafon, J.M. A província mineral de Carajás: aspectos tectono-estruturais, estratigráficos e geocronológicos. Boletim Museu Paraense Emílio Goeldi 1995, 7, 199–235.
[24]
Lima, F.D.; Pinheiro, R.V.L. Forma??o Gorotire: considera??es sobre uma unidade siliciclástica particular da Serra dos Carajás–PA. Proceedings of Anais do VI Simpósio de Geologia da Amaz?nia, Manaus, Brasil, 13–17 June 1999; pp. 201–224.
[25]
Nogueira, A.C.R.; Truckenbrodt, W.; Costa, J.B.S; Pinheiro, R.V.L. Forma??o águas Claras, Pré-Cambriano da Serra dos Carajás. Redescri??o e redefini??o. Boletim do Museu Paraense Emilio Goeldi 1995, 7, 177–197.
[26]
Hirata, W.K.; Rigon, J.C.; Kadekaru, K.; Cordeiro, A.A.C.; Meireles, E.M. Geologia Regional da Província Mineral de Carajás. Proceedings Anais do I Simpósio de Geologia da Amaz?nia, Belém, Brazil, May 1982; pp. 100–109.
[27]
Machado, N.; Lindenmayer, Z.; Krogh, T.E.; Lindenmayer, D. U–Pb geochronology of Archean magmatism and basement reactivation in the Carajás area, Amazon shield, Brazil. Precambrian Res 1991, 49, 329–354.
[28]
Lindenmayer, Z.G.; Laux, J.H.; Teixeira, J.B.G. Considera??es sobre a origem das forma??es ferríferas da Forma??o Carajás, Serra dos Carajás. Revista Brasileira de Geociências 2001, 31, 21–28.
[29]
Olszewski, W.J.; Wirth, K.R.; Gibbs, A.K.; Gaudette, H.E. The age, origin, and tectonics of the Gr?o Pará Group and associated rocks, Serra dos Carajás, Brazil: Archean continental volcanism and rifting. Precambrian Res 1989, 42, 229–254.
[30]
Dall’Agnol., R.; Costi, H.T.; Leite, A.A.S.; Magalhaes, M.S.; Teixeira, N.P. Rapakivi granites from Brazil and adjacent areas. Precambrian Res 1999, 95, 9–39.
[31]
Dall’Agnol, R.; Souza, Z.S.; Althoff, F.J.; Barros, C.E.M.; Leite, A.A.S.; Jorge Joao, X.S. General Aspects of the Granitogenesis of the Carajas Metallogenic Province. Proceedings of the II Intern. Symp. Gran. Assoc. Miner., Excursions Guide, Salvador, Brazil, 24–29 August 1997; pp. 135–161.
[32]
Grainger, C.J.; David, I.G.; Tallarico, F.H.B.; Fletcher, I.R. Metallogenesis of the Carajás Mineral Province, southern Amazon Craton, Brazil: varying styles of Archean through Paleoproterozoic to Neoproterozoic base-and precious-metal mineralization. Ore Geol. Rev 2008, 33, 451–489.
[33]
Dias, G.S.; Macambira, M.J.B.; Dall′Agnol, R.; Soares, A.D.V.; Barros, C.E.M. Data??es de Zirc?es de sill de Metagabro: Comprova??o da Idade Arqueana da Forma??o águas Claras, Carajás–Pará. Proceedings of Anais do V Simpósio de Geologia da Amaz?nia, Belém, Brazil, 27 May–2 June 1996; pp. 376–379.
[34]
Trendall, A.F.; Basei, M.A.S.; Laeter, J.R.; de Nelson, D.R. SHRIMP zircon U-Pb constraints on the age of the Carajás formation, Gr?o Pará Group, Amazon Craton. J. South Am. Earth Sci 1998, 11, 265–277.
[35]
Costa, J.B.S.; Pinheiro, R.V.L.; Jo?o, X. da S.; Araújo, O.J.B. Esbo?o estrutural do Proterozóico médio da Amaz?nia Oriental. Boletim do Museu Paraense Emílio Goeldi 1991, 3, 9–24.
[36]
Sá, G. Caracteriza??o litoestrutural e parametriza??o geomecanica das superfícies de ruptura em taludes da mina de N4E, Carajás-PADisserta??o de Mestrado. Universidade Federal de Ouro Preto, Ouro Preto, 2010.
[37]
International Society for Rock Mechanics (ISRM). Rock Characterization, Testing and Monitoring Suggested Methods; Pergamon Press: London, UK, 1981; p. 211.
[38]
Bieniawski, Z.T. Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil and Petroleum Engineering; John Wiley & Sons: New York, NY, USA, 1989; p. 272.
[39]
Madsen, S.N.; Zebker, H.A. Imaging Radar Interferometry. In Principles & Applications of Imaging Radar: Manual of Remote Sensing, 3rd ed; Henderson, F.M., Lewis, A.J., Eds.; John Wiley & Sons, Inc: Danvers, MA, USA, 1998; Volume 2, pp. 359–380.
[40]
Graham, I.C. Synthetic interferometer radar for topographic mapping. Proc. IEEE 1974, 62, 763–768.
[41]
Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Fiegl, K.; Rabaute, T. The displacement field of the Landers earthquake mapping by radar interferometry. Nature 1993, 364, 138–142.
[42]
Paradella, W.R.; Mura, J.C.; Gama, F.F.; Santos, A.R. Radar Interferometry in Surface Deformation Detection with Orbital Data. Revista Brasileira de Cartografia 2012, 64, 797–811.
[43]
Zhou, X.; Chang, N.B.; Li, S. Applications of SAR interferometry in Earth and environment science research. Sensors 2009, 9, 1876–1912.
[44]
Kampes, B.M. Radar Interferometry: Persistent Scatterer Technique; Springer: Dordrecht, The Netherlands, 2006; p. 211.
[45]
Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terreins using InSAR persistent scatterers. Geophys. Res. Lett 2004, 31, L23611.
[46]
Adam, N.; Kampes, B.; Eineder, M.; Worawattanamateekul, J.; Kircher, M. The Development of a Scientific Permanent Scatterer System. Proceedings of Joint Workshop of ISPRS WG I/2,I/5 and IC WG II/IV and EARSeL Special Interest Group 3D Remote Sensing, Hannover, Germany, 6–8 October 2003; pp. 1–6.
[47]
Duro, J.; Closa, J.; Biescas, E.; Crosetto, M.; Arnaud, A. High Resolution Differential Interferometry Using Time Series of ERS and EVISAT SAR Data. Proceedings of the FRINGE, Frascati, Italy, 2–5 December 2003. Published on CDROM. p. 72.1.
[48]
Werner, C.; Wegmuller, U.; Strozzi, T.; Wiesmann, A. Interferometric Point Target Analysis for Deformation Mapping. Proceedings of the IGARSS’03, Toulouse, France, 21–25 July 2003; pp. 4362–4364.
[49]
Paradella, W.R.; Cheng, P. Using Geoeye-1 stereo data in mining application: automatic DEM generation. Geoinformatics 2013, 16, 10–12.
[50]
Colesanti, C.; Ferretti, A.; Prati, C.; Rocca, F. Comparing GPS, Optical Leveling and Permanent Scatterers. Proceedings of the IGARSS’01, Sydney, Australia, 9–13 July 2001; pp. 2622–2624.
[51]
Orman, M.; Peevers, R.; Sample, K. Waste Piles and Dumps. In SME Mining Engineering Handbook, 3rd ed; Darling, P., Ed.; SME: Englewood, CO, USA, 2011; Volume 1, pp. 667–680.
[52]
Allasia, P.; Manconi, A.; Giordan, D.; Baldo, M.; Lollino, G. ADVICE: a new approach for near-real-time monitoring of surface displacements in landslide hazard scenarios. Sensors 2013, 13, 8285–8302.