全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Stereoscopic Height and Wind Retrievals for Aerosol Plumes with the MISR INteractive eXplorer (MINX)

DOI: 10.3390/rs5094593

Keywords: aerosol sensing, MINX, MISR, plume height, stereoscopic retrieval

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard the Terra satellite acquires imagery at 275-m resolution at nine angles ranging from 0° (nadir) to 70° off-nadir. This multi-angle capability facilitates the stereoscopic retrieval of heights and motion vectors for clouds and aerosol plumes. MISR’s operational stereo product uses this capability to retrieve cloud heights and winds for every satellite orbit, yielding global coverage every nine days. The MISR INteractive eXplorer (MINX) visualization and analysis tool complements the operational stereo product by providing users the ability to retrieve heights and winds locally for detailed studies of smoke, dust and volcanic ash plumes, as well as clouds, at higher spatial resolution and with greater precision than is possible with the operational product or with other space-based, passive, remote sensing instruments. This ability to investigate plume geometry and dynamics is becoming increasingly important as climate and air quality studies require greater knowledge about the injection of aerosols and the location of clouds within the atmosphere. MINX incorporates features that allow users to customize their stereo retrievals for optimum results under varying aerosol and underlying surface conditions. This paper discusses the stereo retrieval algorithms and retrieval options in MINX, and provides appropriate examples to explain how the program can be used to achieve the best results.

References

[1]  Yu, H.; Kaufman, Y.J.; Chin, M.; Feingold, G.; Remer, L.A.; Anderson, T.L.; Balkanski, Y.; Bellouin, N.; Boucher, O.; Christopher, S.; et al. A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos. Chem. Phys 2006, 6, 613–666.
[2]  Schulz, M.; Textor, C.; Kinne, S.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Berglen, T.; Boucher, O.; Dentener, F.; Guibert, S.; et al. Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmos. Chem. Phys 2006, 6, 5225–5246.
[3]  Pósfai, M.; Buseck, P.R. Nature and climate effects of individual tropospheric aerosol particles. Annu. Rev. Earth Planet. Sci 2010, 38, 17–43.
[4]  Liu, J.; Mauzerall, D.L.; Horowitz, L.W. Evaluating inter-continental transport of fine aerosols: (2) Global health impact. Atmos. Environ 2009, 43, 4339–4347.
[5]  Casadevall, T.J. The 1989–1990 eruption of Redoubt Volcano, Alaska: Impacts on aircraft operations. J. Volcanol. Geotherm. Res 1994, 62, 301–316.
[6]  Kahn, R.A.; Chen, Y.C.; Nelson, D.L.; Leung, F.-Y.; Li, Q.; Diner, D.J.; Logan, J.A. Wildfire smoke injection heights—Two perspectives from space. Geophys. Res. Lett 2008, 35, L04809.
[7]  Chen, Y.; Li, Q.; Randerson, J.T.; Lyons, E.A.; Kahn, R.A.; Nelson, D.L.; Diner, D.J. The sensitivity of CO and aerosol transport to the temporal and vertical distribution of North American boreal fire emissions. Atmos. Chem. Phys 2009, 9, 6559–6580.
[8]  Haywood, J.M.; Ramaswamy, V. Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols. J. Geophys. Res 1998, 103, 6043–6058.
[9]  Flanner, M.G.; Zender, C.S.; Randerson, J.T.; Rasch, P.J. Present-day climate forcing and response from black carbon in snow. J. Geophys. Res 2007, 112, D11202.
[10]  Ocko, I.B.; Ramaswamy, V.; Ginoux, P.; Ming, Y.; Horowitz, L.W. Sensitivity of scattering and absorbing aerosol direct radiative forcing to physical climate factors. J. Geophys. Res 2012, 117, D20203.
[11]  Hasler, A.F. Stereographic observations from geosynchronous satellites: An important new tool for the atmospheric sciences. Bull. Am. Meteorol. Soc 1981, 62, 194–212.
[12]  Diner, D.J.; Beckert, J.C.; Reilly, T.H.; Bruegge, C.J.; Conel, J.E.; Kahn, R.A.; Martonchik, J.V.; Ackerman, T.P.; Davies, R.; Gerstl, S.A.W.; et al. Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens 1998, 36, 1072–1087.
[13]  Kahn, R.A.; Li, W.-H.; Moroney, C.; Diner, D.J.; Martonchik, J.V.; Fishbein, E. Aerosol source plume physical characteristics from space-based multiangle imaging. J. Geophys. Res 2007, 112, D11205.
[14]  Horváth, á.; Davies, R. Feasibility and error analysis of cloud motion wind extraction from near-simultaneous multiangle MISR measurements. J. Atmos. Ocean. Technol 2001, 18, 591–608.
[15]  Zong, J.; Davies, R.; Muller, J.-P.; Diner, D.J. Photogrammetric retrieval of cloud advection and top height from the Multi-angle Imaging Spectroradiometer (MISR). Photogramm. Eng. Remote Sens 2002, 68, 821–829.
[16]  Moroney, C.; Davies, R.; Muller, J.-P. Operational retrieval of cloud-top heights using MISR data. IEEE Trans. Geosci. Remote Sens 2002, 40, 1532–1540.
[17]  Muller, J.-P.; Mandanayake, A.; Moroney, C.; Davies, R.; Diner, D.J.; Paradise, S. MISR stereoscopic image matchers: Techniques and results. IEEE Trans. Geosci. Remote Sens 2002, 40, 1547–1559.
[18]  Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol 2009, 26, 2310–2323.
[19]  Wu, D.L.; Chae, J.H.; Lambert, A.; Zhang, F.F. Characteristics of CALIOP attenuated backscatter noise: Implication for cloud/aerosol detection. Atmos. Chem. Phys 2011, 11, 2641–2654.
[20]  Holz, R.E.; Ackerman, S.A.; Nagle, F.W.; Frey, R.; Dutcher, S.; Kuehn, R.E.; Vaughan, M.A.; Baum, B. Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res 2008, 113, D00A19.
[21]  Mazzoni, D.; Logan, J.A.; Diner, D.; Kahn, R.; Tong, L.; Li, Q. A data-mining approach to associating MISR smoke plume heights with MODIS fire measurements. Remote Sens. Environ 2007, 107, 138–148.
[22]  Marey, H.S.; Gille, J.C.; El-Askary, H.M.; Shalaby, E.A.; El-Raey, M.E. Study of the formation of the black cloud and its dynamics over Cairo, Egypt, using MODIS and MISR sensors. J. Geophys. Res 2010, 115, D21206.
[23]  Mims, S.R.; Kahn, R.A.; Moroney, C.M.; Gaitley, B.J.; Nelson, D.L.; Garay, M.J. MISR stereo heights of grassland fire smoke plumes in Australia. IEEE Trans. Geosci. Remote Sens 2010, 48, 25–35.
[24]  Tosca, M.G.; Randerson, J.T.; Zender, C.S.; Nelson, D.L.; Diner, D.J.; Logan, J.A. Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia. J. Geophys. Res 2011, 116, D08209.
[25]  Val Martin, M.; Logan, J.A.; Kahn, R.A.; Leung, F.-Y.; Nelson, D.L.; Diner, D.J. Smoke injection heights from fires in North America: Analysis of 5 years of satellite observations. Atmos. Chem. Phys 2010, 10, 1491–1510.
[26]  Val Martin, M.; Kahn, R.A.; Logan, J.A.; Paugam, R.; Wooster, M.; Ichoku, C. Space-based observational constraints for 1-D fire smoke plume-rise models. J. Geophys. Res 2012, 117, D22204.
[27]  MISR Plume Height Project. Available online: http://www-misr.jpl.nasa.gov/getData/accessData/MisrMinxPlumes/ (accessed on 12 September 2013).
[28]  Scollo, S.; Folch, A.; Coltelli, M.; Realmuto, V.J. Three-dimensional volcanic aerosol dispersal: A comparison between Multiangle Imaging Spectroradiometer (MISR) data and numerical simulations. J. Geophys. Res 2010, 115, D24210.
[29]  Heinold, B.; Tegen, I.; Wolke, R.; Ansmann, A.; Mattis, I.; Minikin, A.; Schumann, U.; Weinzierl, B. Simulations of the 2010 Eyjafjallaj?kull volcanic ash dispersal over Europe using COSMO-MUSCAT. Atmos. Environ 2012, 48, 195–204.
[30]  Scollo, S.; Kahn, R.A.; Nelson, D.L.; Coltelli, M.; Diner, D.J.; Garay, M.J.; Realmuto, V.J. MISR observations of Etna volcanic plumes. J. Geophys. Res 2012, 117, D06210.
[31]  Kahn, R.S.; Limbacher, J.A. Eyjafjallj?kull volcano plume particle-type characterization from space-based multi-angle imaging. Atmos. Chem. Phys 2012, 12, 9459–9477.
[32]  Ekstrand, A.L.; Webley, P.W.; Garay, M.J.; Dehn, J.; Prakash, A.; Nelson, D.L.; Dean, K.G.; Steensen, T. A multi-sensor plume height analysis of the 2009 redoubt eruption. J. Volcanol. Geotherm. Res 2013, 259, 170–184.
[33]  Naud, C.; Muller, J.-P.; Clothiaux, E.E. Comparison of cloud top heights derived from MISR stereo and MODIS CO2-slicing. Geophys. Res. Lett 2002, doi:10.1029/2002GL015460.
[34]  Naud, C.M.; Muller, J.-P.; Clothiaux, E.E.; Baum, B.A.; Menzel, W.P. Intercomparison of multiple years of MODIS, MISR and radar cloud-top heights. Ann. Geophys 2005, 23, 2415–2424.
[35]  Marchand, R.T.; Ackerman, T.P.; Moroney, C. An assessment of Multiangle Imaging Spectroradiometer (MISR) stereo-derived cloud top heights and cloud top winds using ground-based radar, lidar, and microwave radiometers. J. Geophys. Res 2007, 112, D06204.
[36]  Garay, M.J.; de Szoeke, S.P.; Moroney, C.M. Comparison of marine stratocumulus cloud top heights in the southeastern Pacific retrieved from satellites with coincident ship-based observations. J. Geophys. Res 2008, 113, D18204.
[37]  Diner, D.J.; Beckert, J.C.; Bothwell, G.W.; Rodriguez, J.I. Performance of the MISR instrument during its first 20 months in Earth orbit. IEEE Trans. Geosci. Remote Sens 2001, 40, 1449–1466.
[38]  Bothwell, G.W.; Hansen, E.G.; Vargo, R.E.; Miller, K.C. The Multi-angle Imaging SpectroRadiometer science data system, its products, tools, and performance. IEEE Trans. Geosci. Remote Sens 2002, 40, 1467–1476.
[39]  .
[40]  NASA’s Earth Observing System. Available online: http://eospso.gsfc.nasa.gov/atbd-category/45 (accessed on 12 September 2013).
[41]  .
[42]  Jovanovic, V.M.; Smyth, M.M.; Zong, J.; Ando, R.; Bothwell, G.W. MISR photogrammetric data reduction for geophysical retrievals. IEEE Trans. Geosci. Remote Sens 1998, 36, 1290–1301.
[43]  Davies, R.; Horváth, á.; Moroney, C.; Zhang, B.; Zhu, Y. Cloud motion vectors from MISR using sub-pixel enhancements. Remote Sens. Environ 2007, 107, 194–199.
[44]  EXELIS Visual Data Solutions. Available online: http://www.exelisvis.com/ProductsServices/IDL.aspx (accessed on 12 September 2013).
[45]  Open Channel Foundation: MINX-MISR Interactive eXplorer. Available online: http://www.openchannelsoftware.com/projects/MINX (accessed on 12 September 2013).
[46]  Mazzoni, D.; Garay, M.J.; Davies, R.; Nelson, D. An operational MISR pixel classifier using support vector machines. Remote Sens. Environ 2007, 107, 149–158.
[47]  Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The MODIS fire products. Remote Sens. Environ 2002, 83, 244–262.
[48]  Giglio, L.; Descloitres, J.; Justice, C.O.; Kaufman, Y.J. An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ 2003, 87, 273–282.
[49]  MINX PDF Documentation—6 Files. Available online: https://www.openchannelsoftware.com/orders/index.php?group_id=366 (accessed on 12 September 2013).
[50]  Nelson, D.L.; Chen, Y.; Kahn, R.A.; Diner, D.J.; Mazzoni, D. Example applications of the MISR INteractive eXplorer (MINX) software tool to wildfire smoke plume analyses. Proc. SPIE 2008, 7089, 708909.
[51]  Jovanovic, V.; Moroney, C.; Nelson, D. Multi-angle geometric processing for globally geo-located and co-registered MISR image data. Remote Sens. Environ 2007, 107, 22–32.
[52]  Jovanovic, V.M.; Bull, M.A.; Smyth, M.M.; Zong, J. MISR in-flight camera geometric model calibration and georectification performance. IEEE Trans. Geosci. Remote Sens 2002, 40, 1512–1519.
[53]  Moroney, C.; Horváth, á.; Davies, R. Use of stereo-matching to coregister multiangle data from MISR. IEEE Trans. Geosci. Remote Sens 2002, 40, 1541–1546.
[54]  Todd, M.C.; Washington, R.; Martins, J.V.; Dubovik, O.; Lizcano, G.; M’Bainayel, S.; Engelstaedter, S. Mineral dust emission from the Bodélé Depression, northern Chad, during BoDEx 2005. J. Geophys. Res 2007, 112, D06207.
[55]  Koren, I.; Kaufman, Y.J. Direct wind measurements of Saharan dust events from Terra and Aqua satellites. Geophys. Res. Lett 2004, 31, L06122.
[56]  Ernst, G.J.; Davis, J.P.; Sparks, R.S. Bifurcation of volcanic plumes in a crosswind. Bull. Volcanol 1994, 56, 159–169.
[57]  NASA Earth Observatory. Available online: http://earthobservatory.nasa.gov (accessed on 12 September 2013).
[58]  Fromm, M.; Lindsey, D.T.; Servranckx, R.; Yue, G.; Trickl, T.; Sica, R.; Doucet, P.; Godin-Beekmann, S. The untold story of pyrocumulonimbus. Bull. Am. Meteorol. Soc 2010, 91, 1193–1209.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133