全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Estimates of Forest Growing Stock Volume for Sweden, Central Siberia, and Québec Using Envisat Advanced Synthetic Aperture Radar Backscatter Data

DOI: 10.3390/rs5094503

Keywords: SAR backscatter, Envisat ASAR, growing stock volume, boreal forest, Sweden, Siberia, Québec, BIOMASAR algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

A study was undertaken to assess Envisat Advanced Synthetic Aperture Radar (ASAR) ScanSAR data for quantifying forest growing stock volume (GSV) across three boreal regions with varying forest types, composition, and structure (Sweden, Central Siberia, and Québec). Estimates of GSV were obtained using hyper-temporal observations of the radar backscatter acquired by Envisat ASAR with the BIOMASAR algorithm. In total, 5.3×10 6 km 2 were mapped with a 0.01° pixel size to obtain estimates representative for the year of 2005. Comparing the SAR-based estimates to spatially explicit datasets of GSV, generated from forest field inventory and/or Earth Observation data, revealed similar spatial distributions of GSV. Nonetheless, the weak sensitivity of C-band backscatter to forest structural parameters introduced significant uncertainty to the estimated GSV at full resolution. Further discrepancies were observed in the case of different scales of the ASAR and the reference GSV and in areas of fragmented landscapes. Aggregation to 0.1° and 0.5° was then undertaken to generate coarse scale estimates of GSV. The agreement between ASAR and the reference GSV datasets improved; the relative difference at 0.5° was consistently within a magnitude of 20–30%. The results indicate an improvement of the characterization of forest GSV in the boreal zone with respect to currently available?information.

References

[1]  Houghton, R.A. Why are estimates of the terrestrial carbon balance so different? Global Change Biol 2003, 9, 500–509.
[2]  Shvidenko, A.Z.; Schepaschenko, D.G.; Vaganov, E.A.; Nilsson, S. Net Primary Production of forest ecosystems of Russia: A new estimate. Dokl. Earth Sci 2008, 421, 1009–1012.
[3]  Houghton, R.A.; Hall, F.; Goetz, S.J. Importance of forest biomass in the global carbon cycle. J. Geophys. Res 2009, 114, G00E03.
[4]  Houghton, R.A. Aboveground forest biomass and the global carbon balance. Global Change Biol 2005, 11, 945–958.
[5]  Kinnunen, J.; Maltamo, M.; P?ivinen, R. Standing volume estimates of forests in Russia: How accurate is the published data? Forestry 2007, 80, 53–64.
[6]  Kindermann, G.E.; McCallum, I.; Fritz, S.; Obersteiner, M. A global forest growing stock, biomass and carbon map based on FAO statistics. Silva Fenn 2008, 42, 387–396.
[7]  Axelsson, A.–L.; St?hl, G.; S?derberg, U.; Petersson, H.; Fridman, J.; Lundstr?m, A. National Forest Inventory Reports: Sweden. In National Forest Inventories: Pathways for Common Reporting; Tomppo, E., Gschwantner, T., Lawrence, M., McRoberts, R.E., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 541–553.
[8]  Shvidenko, A.; Schepaschenko, D.; McCallum, I.; Nilsson, S. Can the uncertainty of full carbon accounting of forest ecosystems be made acceptable to policymakers? Clim. Change 2010, 103, 137–157.
[9]  Gillis, M.D.; Omule, A.Y.; Brierley, T. Monitoring Canada’s forests: The National Forest Inventory. Forest. Chron 2005, 81, 214–221.
[10]  Reese, H.; Nilsson, M.; Granqvist Pahlén, T.; Hagner, O.; Joyce, S.; Tingel?f, U.; Egberth, M.; Olsson, H. Countrywide estimates of forest variables using satellite data and field data from the National Forest Inventory. Ambio 2003, 32, 542–548.
[11]  Houghton, R.A.; Butman, D.; Bunn, A.G.; Krankina, O.N.; Schlesinger, P.; Stone, T.A. Mapping Russian forest biomass with data from satellites and forest inventories. Environ. Res. Lett 2007, 2, 045032.
[12]  Blackard, J.A.; Finco, M.V.; Helmer, E.H.; Holden, G.R.; Hoppus, M.L.; Jacobs, D.M.; Lister, A.J.; Moisen, G.G.; Nelson, M.D.; Riemann, R.; et al. Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sens. Environ 2008, 112, 1658–1677.
[13]  Baccini, A.; Laporte, N.; Goetz, S.J.; Sun, M.; Dong, H. A first map of tropical Africa’s above-ground biomass derived from satellite imagery. Environ. Res. Lett 2008, 3, 045011.
[14]  Gallaun, H.; Zanchi, G.; Nabuurs, G.J.; Hengeveld, G.; Schardt, M.; Verkerk, P.J. EU–wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements. For. Ecol. Manage 2010, 260, 252–261.
[15]  Hansen, M.; Townshend, J.R.G.; DeFries, R.S.; Carroll, M. Estimation of tree cover using MODIS data at global, continental and regional/local scales. Int. J. Remote Sens 2005, 26, 4359–4380.
[16]  Lefsky, M.A. A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System. Geophys. Res. Lett 2010, 37, L15401.
[17]  Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res.-Biogeo 2011, 116, G04021.
[18]  Boudreau, J.; Nelson, R.F.; Margolis, H.A.; Beaudoin, A.; Guindon, L.; Kimes, D.S. Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. Remote Sens. Environ 2008, 112, 3876–3890.
[19]  Nelson, R.; Ranson, K.J.; Sun, G.; Kimes, D.S.; Kharuk, V.; Montesano, P. Estimating Siberian timber volume using MODIS and ICESat/GLAS. Remote Sens. Environ 2009, 113, 691–701.
[20]  Nelson, R.; Boudreau, J.; Gregoire, T.G.; Margolis, H.; N?sset, E.; Gobakken, T.; St?hl, G. Estimating Quebec provincial forest resources using ICESat/GLAS. Can. J. For. Res 2009, 39, 862–881.
[21]  Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904.
[22]  Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.S.A.; Dubayah, R.; Friedl, M.A.; et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Climate Change 2012, 2, 182–185.
[23]  Asner, G.P.; Powell, G.V.N.; Mascaro, J.; Knapp, D.E.; Clark, J.K.; Jacobson, J.; Kennedy-Bowdoin, T.; Balaji, A.; Paez-Acosta, G.; Victoria, E.; et al. High-resolution forest carbon stocks and emissions in the Amazon. Proc. Natl. Acad. Sci. USA 2010, 107, 16738–16742.
[24]  Ranson, K.J.; Sun, G.; Lang, R.H.; Chauhan, N.S.; Cacciola, R.J.; Kilic, O. Mapping of boreal forest biomass from spaceborne synthetic aperture radar. J. Geophys. Res 1997, 102, 29,599–29,610.
[25]  Saatchi, S.S.; Houghton, R.A.; Dos Santos Alvalá, R.C.; Soares, J.V.; Yu, Y. Distribution of aboveground live biomass in the Amazon basin. Global Change Biol 2007, 13, 816–837.
[26]  Walker, W.S.; Kellndorfer, J.M.; LaPoint, E.; Hoppus, M.; Westfall, J. An empirical InSAR-optical fusion approach to mapping vegetation canopy height. Remote Sens. Environ 2007, 109, 482–499.
[27]  Balzter, H.; Talmon, E.; Wagner, W.; Gaveau, D.; Plummer, S.; Yu, J.J.; Quegan, S.; Davidson, M.; Le Toan, T.; Gluck, M.; et al. Accuracy assessment of a large-scale forest cover map of central Siberia from synthetic aperture radar. Can. J. Remote Sens 2002, 28, 719–737.
[28]  Gaveau, D.L.A.; Balzter, H.; Plummer, S. Forest woody biomass classification with satellite-based radar coherence over 900 000 km2 in Central Siberia. For. Ecol. Manage 2003, 174, 65–75.
[29]  Wagner, W.; Luckman, A.; Vietmeier, J.; Tansey, K.; Balzter, H.; Schmullius, C.; Davidson, M.; Gaveau, D.; Gluck, M.; Le Toan, T.; et al. Large-scale mapping of boreal forest in SIBERIA using ERS tandem coherence and JERS backscatter data. Remote Sens. Environ 2003, 85, 125–144.
[30]  Cartus, O.; Santoro, M.; Schmullius, C.; Li, Z. Large area forest stem volume mapping in the boreal zone using synergy of ERS-1/2 tandem coherence and MODIS vegetation continuous fields. Remote Sens. Environ 2011, 115, 931–943.
[31]  Drezet, P.M.L.; Quegan, S. Satellite–based radar mapping of British forest age and Net Ecosystem Exchange using ERS tandem coherence. For. Ecol. Manage 2007, 238, 65–80.
[32]  ESA. ASAR Product Handbook; ESA ESRIN: Frascati, Italy, 2007. Issue 2.2..
[33]  Fransson, J.E.S.; Israelsson, H. Estimation of stem volume in boreal forests using ERS-1 C- and JERS-1 L-band SAR data. Int. J. Remote Sens 1999, 20, 123–137.
[34]  Pulliainen, J.T.; Kurvonen, L.; Hallikainen, M.T. Multitemporal behavior of L- and C-band SAR observations of boreal forests. IEEE Trans. Geosci. Remote Sens 1999, 37, 927–937.
[35]  Santoro, M.; Askne, J.; Smith, G.; Fransson, J.E.S. Stem volume retrieval in boreal forests from ERS-1/2 interferometry. Remote Sens. Environ 2002, 81, 19–35.
[36]  Santoro, M.; Beer, C.; Cartus, O.; Schmullius, C.; Shvidenko, A.; McCallum, I.; Wegmüller, U.; Wiesmann, A. Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements. Remote Sens. Environ 2011, 115, 490–507.
[37]  Beer, C.; Lucht, W.; Schmullius, C.; Shvidenko, A. Small net carbon dioxide uptake by Russian forests during 1981–1999. Geophys. Res. Lett 2006, 33, L15403.
[38]  Santoro, M.; Beer, C.; Shvidenko, A.; McCallum, I.; Wegmüller, U.; Wiesmann, A.; Schmullius, C. Comparison of Forest Biomass Estimates in Siberia Using Spaceborne SAR, Inventory-Based Information and the LPJ Dynamic Global Vegetation Model. Proceedings of the Envisat Symposium 2007, Montreux, France, 23–27 April 2007.
[39]  Quegan, S.; Beer, C.; Shvidenko, A.; McCallum, I.; Handoh, I.C.; Peylin, P.; R?denbeck, C.; Lucht, W.; Nilsson, S.; Schmullius, C. Estimating the carbon balance of central Siberia using a landscape-ecosystem approach, atmospheric inversion and Dynamic Global Vegetation Models. Global Change Biol 2011, 17, 351–365.
[40]  SLU. Skogsdata 2009: Forestry Statistics 2009; Swedish University of Agricultural Sciences: Ume?, Sweden, 2009.
[41]  FFSR. Forest Fund of Russia (State as of 1 January 2003); Federal Forest Service of Russia: Moscow, Russia, 2003.
[42]  Bartholomé, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from Earth Observation data. Int. J. Remote Sens 2005, 26, 1959–1977.
[43]  ESWG. A National Ecological Framework for Canada; Ecological Stratification Working Group, Agriculture and Agri-Food Canada, Research Branch, Centre for Land and Biological Resources Research and Environment Canada, State of the Environment Directorate, Ecozone Analysis Branch: Ottawa/Hull, ON, Canada, 1995.
[44]  Wegmüller, U. Automated Terrain Corrected SAR Geocoding. Proceedings of the 1999 IEEE International Geoscience and Remote Sensing Symposium, IGARSS’99, Hamburg, Germany, 28 June–2 July 1999.
[45]  Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The Shuttle Radar Topography Mission—A new class of digital elevation models acquired by spaceborne SAR. ISPRS J. Photogramm. Remote Sens 2003, 57, 241–262.
[46]  De Ferranti, J. Digital Elevation Data. Available online: http://www.viewfinderpanoramas.org/dem3.html (accessed on 28 February 2012).
[47]  Canadian Digital Elevation Data. Available online: http://www.geobase.ca/geobase/en/index.html (accessed on 28 February 2012).
[48]  Wiesmann, A.; Wegmüller, U.; Santoro, M.; Strozzi, T.; Werner, C. Multi-Temporal and Multi-Incidence Angle ASAR Wide Swath Data for Land Cover Information. Proceedings of the 4th International Symposium on Retrieval of Bio- and Geophysical Parameters from SAR Data for Land Applications, Innsbruck, Austria, 16–19 November 2004.
[49]  Quegan, S.; Yu, J.J. Filtering of multichannel SAR images. IEEE Trans. Geosci. Remote Sens 2001, 39, 2373–2379.
[50]  Oliver, C.; Quegan, S. Understanding Synthetic Aperture Radar Images; Artech House: Boston, MA, USA, 1998.
[51]  Pulliainen, J.T.; Heiska, K.; Hyypp?, J.; Hallikainen, M.T. Backscattering properties of boreal forests at the C- and X-bands. IEEE Trans. Geosci. Remote Sens 1994, 32, 1041–1050.
[52]  Askne, J.; Dammert, P.B.G.; Ulander, L.M.H.; Smith, G. C-band repeat-pass interferometric SAR observations of the forest. IEEE Trans. Geosci. Remote Sens 1997, 35, 25–35.
[53]  Hyypp?, J.; Pulliainen, J.; Hallikainen, M.; Saatsi, A. Radar-derived standwise forest inventory. IEEE Trans. Geosci. Remote Sens 1997, 35, 392–404.
[54]  Hansen, M.C.; De Fries, R.S.; Townshend, J.R.G.; Carroll, M.; Dimiceli, C.; Sohlberg, R.A. Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous field algorithm. Earth Interact 2003, 7, 1–15.
[55]  Hall, R.J.; Skakun, R.S.; Beaudoin, A.; Wulder, M.A.; Arsenault, E.J.; Bernier, P.Y.; Guindon, L.; Luther, J.E.; Gillis, M.D. Approaches for Forest Biomass Estimation and Mapping in Canada. Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, IGARSS’10, Honolulu, HI, USA, 25–30 July 2010.
[56]  Gibbs, H.K. Olson’s Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: An Updated Database Using the GLC2000 Land Cover Product; Carbon Dioxide Information Center, Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2012.
[57]  Ruesch, A.; Gibbs, H.K. New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000; Carbon Dioxide Information Center, Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2012.
[58]  FFSR. Manual of Forest Inventory and Planning in Forest Fund of Russia, Part 1; Federal Forest Service of Russia: Moscow, Russia, 1995.
[59]  Shvidenko, A.; Schepaschenko, D.; Nilsson, S.; Buluy, Y.I. Tables and Models of Growth and Biological Productivity of Forests of Major Forest Forming Species of Northern Eurasia (Standard and Reference Data). (in Russian & English),, 2nd ed ed.; Federal Forest Service of Russia and International Institute for Applied Systems Analysis: Moscow, Russia, 2008.
[60]  Alexeyev, V.A.; Markov, M.V. Statistical Data about Forest Fund and Change of Productivity of Forests of Russia in the Second Half of 20th Century; Saint-Petersburg Forest Research Institute: Saint-Petersburg, Russia, 2003.
[61]  SLU, Skogskarta. Available online: http://skogskarta.slu.se/index.cfm?eng=1 (accessed on 28 February 2012).
[62]  Wulder, M.A.; White, J.C.; Cranny, M.; Hall, R.J.; Luther, J.E.; Beaudoin, A.; Goodenough, D.G.; Deckha, J.A. Monitoring Canada’s forests. Part 1: Completion of the EOSD land cover project. Can. J. Remote Sens 2008, 34, 549–562.
[63]  Olson, J.S.; Watts, J.A.; Allison, L.J. Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation; Dioxide Information Center, Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1985.
[64]  IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use; Cambridge University Press: Cambridge, UK, 2006.
[65]  Lin, L.; Hedayat, A.S.; Sinha, B.; Yang, M. Statistical methods in assessing agreement: Models, issues and tools. J. Am. Stat. Assoc 2002, 97, 257–270.
[66]  Boudewyn, P.; Song, X.; Magnussen, S.; Gillis, M.D. Model-Based, Volume-to-Biomass Conversion for Forested and Vegetated Land in Canada. Information Report BC-X-411;; Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre: Victoria, BC, Canada, 2007.
[67]  Keeling, H.C.; Phillips, O.L. The global relationship between forest productivity and biomass. Global Ecol. Biogeogr 2007, 16, 618–631.
[68]  Le Toan, T.; Quegan, S.; Woodward, I.; Lomas, M.; Delbart, N.; Picard, G. Relating radar remote sensing of biomass to modelling of forest carbon budgets. Clim. Change 2004, 67, 379–402.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133