全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Extraction of Coastline in Aquaculture Coast from Multispectral Remote Sensing Images: Object-Based Region Growing Integrating Edge Detection

DOI: 10.3390/rs5094470

Keywords: coastline extraction, aquaculture, image segmentation, region growing, edge detection, object merging index

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aquaculture coasts have become widely distributed in coastal zones as human activities are intensified. Due to the complexity in this type of coast, it is difficult to extract the coastline with traditional automated mapping approaches. In this paper, we present an automated method— object-based region growing integrating edge detection (OBRGIE) for the extraction of this type of coastline. In this method, a new object feature named OMI ( object merging index) is proposed to separate land and sea. The OBRGIE method was applied to Landsat Thematic Mapper (TM) (pixel size 30m) and Satellite Pour l’Observation de la Terre (SPOT-5) (pixel size 10 m) images of two coastal segments with lengths of 272.7 km and 35.5 km respectively, and the accuracy of the extracted coastlines was assessed in comparison with the manually delineated coastlines. The mean and RMSE (root mean square error) are 16.0?m and 16.4 m respectively for the TM images, and 8.0 m and 8.6 m, respectively, for the SPOT-5 images, indicating that the proposed method derives coastlines with pixel accuracy. The OBRGIE method is also found to be robust to the segmentation scale parameter, and the OMI feature is much more effective than the spectral attribute in separating land and sea in aquaculture coasts. This method may provide an inexpensive means of fast coastline mapping from remotely sensed imagery with relatively fine-to-moderate spatial resolution in coastal sectors with intense human?interference.

References

[1]  Boak, E.H.; Turner, I.L. Shoreline definition and detection: A review. J. Coastal Res 2005, 21, 688–703.
[2]  Gens, R. Remote sensing of coastlines: Detection, extraction and monitoring. Int. J. Remote Sens 2010, 31, 1819–1836.
[3]  Wang, C.Y.; Zhang, J.; Ma, Y. Coastline interpretation from multispectral remote sensing images using an association rule algorithm. Int. J. Remote Sens 2010, 31, 6409–6423.
[4]  Gao, Y. Research on Spatial and Temporal Changes of China mainland Coastline in the Past 30 Years (in Chinese). Ph.D. Dissertation; Graduate University of Chinese Academy of Sciences: Beijing, China, 2011.
[5]  Mason, D.C.; Davenport, I.J. Accurate and efficient determination of the shoreline in ERS-1 SAR images. IEEE Trans. Geosci. Remote Sens 1996, 34, 1243–1253.
[6]  Liu, H.X.; Jezek, K.C. A complete high-resolution coastline of antarctica extracted from orthorectified Radarsat SAR imagery. Photogramm. Eng. Rem. Sens 2004, 70, 605–616.
[7]  Sohn, H.G.; Jezek, K.C. Mapping ice sheet margins from ERS-1 SAR and SPOT imagery. Int. J. Remote Sens 1999, 20, 3201–3216.
[8]  Kuleli, T.; Guneroglu, A.; Karsli, F.; Dihkan, M. Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey. Ocean Eng 2011, 38, 1141–1149.
[9]  Maiti, S.; Bhattacharya, A.K. Shoreline change analysis and its application to prediction: A remote sensing and statistics based approach. Mar. Geol 2009, 257, 11–23.
[10]  Yamano, H.; Shimazaki, H.; Matsunaga, T.; Ishoda, A.; McClennen, C.; Yokoki, H.; Fujita, K.; Osawa, Y.; Kayanne, H. Evaluation of various satellite sensors for waterline extraction in a coral reef environment: Majuro Atoll, Marshall Islands. Geomorphology 2006, 82, 398–411.
[11]  Kingston, K.S.; Ruessink, B.G.; van Enckevort, I.M.J.; Davidson, M.A. Artificial neural network correction of remotely sensed sandbar location. Mar. Geol 2000, 169, 137–160.
[12]  Guariglia, A.; Buonamassa, A.; Losurdo, A.; Saladino, R.; Trivigno, M.L.; Zaccagnino, A.; Colangelo, A. A multisource approach for coastline mapping and identification of shoreline changes. Ann. Geophys 2006, 49, 295–304.
[13]  Foody, G.M.; Muslim, A.M.; Atkinson, P.M. Super-resolution mapping of the waterline from remotely sensed data. Int. J. Remote Sens 2005, 26, 5381–5392.
[14]  Muslim, A.M.; Foody, G.M.; Atkinson, P.M. Localized soft classification for super-resolution mapping of the shoreline. Int. J. Remote Sens 2006, 27, 2271–2285.
[15]  Lee, D.S.; Shan, J. Combining lidar elevation data and IKONOS multispectral imagery for coastal classification mapping. Mar. Geod 2003, 26, 117–127.
[16]  Deronde, B.; Houthuys, R.; Debruyn, W.; Fransaer, D.; Van Lancker, V.; Henriet, J.P. Use of airborne hyperspectral data and laserscan data to study beach morphodynamics along the Belgian coast. J. Coastal Res 2006, 22, 1108–1117.
[17]  Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogramm. Remote Sens 2004, 58, 239–258.
[18]  Trimble. eCognition Developer 8.7: Reference Book; Trimble: Munich, Germany, 2011.
[19]  Blaschke, T. Object based image analysis for remote sensing. ISPRS J Photogramm. Remote Sens 2010, 65, 2–16.
[20]  Polychronaki, A.; Gitas, I.Z. Burned area mapping in greece using SPOT-4 HRVIR images and object-based image analysis. Remote Sens 2012, 4, 424–438.
[21]  Salehi, B.; Zhang, Y.; Zhong, M.; Dey, V. Object-Based Classification of Urban Areas Using VHR Imagery and Height Points Ancillary Data. Remote Sens 2012, 4, 2256–2276.
[22]  Tarantino, E.; Figorito, B. Mapping Rural Areas with Widespread Plastic Covered Vineyards Using True Color Aerial Data. Remote Sens 2012, 4, 1913–1928.
[23]  Vo, Q.; Oppelt, N.; Leinenkugel, P.; Kuenzer, C. Remote sensing in mapping mangrove ecosystems—An object-based approach. Remote Sens 2013, 5, 183–201.
[24]  Canny, J. A computational approach to edge-detection. IEEE Trans. Pattern Anal. Mach. Intell 1986, 8, 679–698.
[25]  Serra, J. Image Analysis and Mathematical Morphology; Academic Press: London, UK, 1982.
[26]  Douglas, D.H.; Peucker, T.K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: Int. J. Geogr. Inf. Geovisual 1973, 10, 112–122.
[27]  Dolan, R.; Hayden, B.; Heywood, J. New photogrammetric method for determining shoreline erosion. Coast Eng 1978, 2, 21–39.
[28]  Thieler, E.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. The Digital Shoreline Analysis System(DSAS) Version 4. 0—An ArcGIS Extension for Calculating Shoreline Change; USGS: Woods Hole, MA, USA, 2009.
[29]  White, K.; El Asmar, H.M. Monitoring changing position of coastlines using Thematic Mapper imagery, an example from the Nile Delta. Geomorphology 1999, 29, 93–105.
[30]  Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Ruiz, L.A.; Palomar-Vázquez, J. Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sens. Environ 2012, 123, 1–11.
[31]  Ryu, J.H.; Won, J.S.; Min, K.D. Waterline extraction from Landsat TM data in a tidal flat—A case study in Gomso Bay, Korea. Remote. Sens. Environ 2002, 83, 442–456.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133