全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evaluating the Effects of Shadow Detection on QuickBird Image Classification and Spectroradiometric Restoration

DOI: 10.3390/rs5094450

Keywords: land use and land cover, pixel-based, object-oriented, high resolution, shadows

Full-Text   Cite this paper   Add to My Lib

Abstract:

Shadows in high resolution imagery create significant problems for urban land cover classification and environmental application. We first investigated whether shadows were intrinsically different and hypothetically possible to separate from each other with ground spectral measurements. Both pixel-based and object-oriented methods were used to evaluate the effects of shadow detection on QuickBird image classification and spectroradiometric restoration. In each method, shadows were detected and separated either with or without histogram thresholding, and subsequently corrected with a k-nearest neighbor algorithm and a linear correlation correction. The results showed that shadows had distinct spectroradiometric characteristics, thus, could be detected with an optimal brightness threshold and further differentiated with a scene-based near infrared ratio. The pixel-based methods generally recognized more shadow areas and with statistically higher accuracy than the object-oriented methods. The effects of the prior shadow thresholding were not statistically significant. The accuracy of the final land cover classification, after accounting for the shadow detection and separation, was significantly higher for the pixel-based methods than for the object-oriented methods, although both achieved similar accuracy for the non-shadow classes. Both radiometric restoration algorithms significantly reduced shadow areas in the original satellite images.

References

[1]  Dare, P.M. Shadow analysis in high-resolution satellite imagery of urban areas. Photogramm. Eng. Remote Sens 2005, 71, 169–177.
[2]  Yuan, F.; Bauer, M.E. Mapping Impervious Surface Area Using High Resolution Imagery: A Comparison of Object-Oriented Classification to Per-Pixel Classification. Proceedings of ASPRS 2006 Annual Conference, Reno, NV, USA, 1–5 May 2006; 3, pp. 1667–1674.
[3]  Susaki, J. Segmentation of shadowed buildings in dense urban areas from aerial photographs. Remote Sens 2012, 4, 911–933.
[4]  Leblon, B.; Gallant, L.; Granberg, H. Effects of shadowing types on ground-measured visible and near-infrared shadow reflectances. Remote Sens. Environ 1996, 58, 322–328.
[5]  Wu, J.; Bauer, M.E. Estimating net primary production of turfgrass in an urban-suburban landscape with QuickBird imagery. Remote Sens 2012, 4, 849–866.
[6]  Shackelford, A.K.; Davis, C.H. A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas. IEEE Trans. Geosci. Remote Sens 2003, 41, 2354–2363.
[7]  Sarabandi, P.; Yamazaki, F.; Matsuoka, M.; Kiremidjian, K. Shadow Detection and Radiometric Restoration in Satellite High Resolution Images. Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium (IGARSS ’04), Anchorage, AK, USA, 20–24 September 2004; 6, pp. 3744–3747.
[8]  Chen, Y.; Wen, D.; Jing, L.; Shi, P. Shadow information recovery in urban areas from very high resolution satellite imagery. Int. J. Remote Sens 2007, 28, 3249–3254.
[9]  Salvador, E.; Cavallaro, A.; Ebrahimi, T. Shadow Identification and Classification Using Invariant Color Models. Proceedings of 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’01), Salt Lake City, UT, USA, 7–11 May 2001; 3, pp. 1545–1548.
[10]  Tsai, V.U.D. A comparative study on shadow compensation of color aerial images in invariant color models. IEEE Trans. Geosci. Remote Sens 2006, 44, 1661–1671.
[11]  Chung, K.-L.; Lin, Y.-R.; Huang, Y.-H. Efficient shadow detection of color aerial images based on successive thresholding scheme. IEEE Trans. Geosci. Remote Sens 2009, 47, 671–682.
[12]  Zhou, W.; Huang, G.; Troy, A.; Cadenasso, M.L. Object-based land cover classification of shaded areas in high spatial resolution imagery of urban areas: A comparison study. Remote Sens. Environ 2009, 113, 1769–1777.
[13]  Rau, J.Y.; Chen, N.Y.; Chen, L.C. True orthophoto generation of built-up areas using multi-view images. Photogramm. Eng. Remote Sens 2002, 68, 581–588.
[14]  Li, Y.; Gong, P.; Sasagawa, T. Integrated shadow removal based on photogrammetry and image analysis. Int. J. Remote Sens 2005, 26, 3911–3929.
[15]  Yuan, F. Land-cover change and environmental impact analysis in the Greater Mankato area of Minnesota using remote sensing and GIS modeling. Int. J. Remote Sens 2008, 29, 1169–1184.
[16]  Kasetkasem, T.; Varshney, P.K. An optimum land cover mapping algorithm in the presence of shadow. IEEE J. Sel. Top. Signal Process 2011, 5, 592–605.
[17]  Lorenzi, L.; Melgani, F.; Mercier, G. A complete processing chain for shadow detection and reconstruction in VHR images. IEEE Trans. Geosci. Remote Sens 2012, 50, 3440–3452.
[18]  Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, L.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens 2004, 58, 239–258.
[19]  Liu, W.; Yamazaki, F. Object-based shadow extraction and correction of high-resolution optical satellite images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2012, 5, 1296–1302.
[20]  Wu, J.; Wang, D.; Bauer, M.E. Image-based atmospheric correction of QuickBird imagery of Minnesota cropland. Remote Sens. Environ 2005, 99, 315–325.
[21]  Definiens. Definiens Professional 5 Reference Book; Definiens AG: Munich, Germany, 2006.
[22]  Baatz, M.; Sch?pe, A. Multiresolution Segmentation—An Optimization Approach for High Quality Multi-Scale Image Segmentation. In Angewandte Geographische Informations-Verarbeitung XII; Strobl, J., Blaschke, T., Greisebener, G., Eds.; Wichmann Verlag: Karlsruhe, Germany, 2000; pp. 12–23.
[23]  Duda, R.O.; Hart, P.E. Pattern Classification and Scene Analysis, 1st ed. ed.; Wiley: New York, NY, USA, 1973.
[24]  Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed. ed.; CRC/Taylor and Francis: Boca Raton, FL, USA, 2009.
[25]  Radoux, J.; Bogaert, P.; Fasbender, D.; Defourny, P. Thematic accuracy assessment of geographic object-based image classification. Int. J. Geogr. Inf. Sci 2011, 25, 895–911.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133