全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Landslide Investigation with Remote Sensing and Sensor Network: From Susceptibility Mapping and Scaled-down Simulation towards in situ Sensor Network Design

DOI: 10.3390/rs5094319

Keywords: landslide, sensor network, susceptibility mapping, remote sensing

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents an integrated approach to landslide research based on remote sensing and sensor networks. This approach is composed of three important parts: (i) landslide susceptibility mapping using remote-sensing techniques for susceptible determination of landslide spots; (ii) scaled-down landslide simulation experiments for validation of sensor network for landslide monitoring, and (iii) in situ sensor network deployment for intensified landslide monitoring. The study site is the Taziping landslide located in Hongkou Town (Sichuan, China). The landslide features generated by landslides triggered by the 2008 Wenchuan Earthquake were first extracted by means of object-oriented methods from the remote-sensing images before and after the landslides events. On the basis of correlations derived between spatial distribution of landslides and control factors, the landslide susceptibility mapping was carried out using the Artificial Neural Network (ANN) technique. Then the Taziping landslide, located in the above mentioned study area, was taken as an example to design and implement a scaled-down landslide simulation platform in Tongji University (Shanghai, China). The landslide monitoring sensors were carefully investigated and deployed for rainfall induced landslide simulation experiments. Finally, outcomes from the simulation experiments were adopted and employed to design the future in situ sensor network in Taziping landslide site where the sensor deployment is being implemented.

References

[1]  Schuster, R.L. Socioeconomic Significance of Landslides. In Landslides: Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.;. Transportation Research Board Special Report 247; National Academies Press: Washington, DC, USA, 1996; pp. 12–35.
[2]  Sassa, K.; Tsuchiya, S.; Ugai, K.; Wakai, A.; Uchimura, T. Landslides: A review of achievements in the first 5 years (2004–2009). Landslides 2009, 6, 275–286.
[3]  Delacourt, C.; Allemand, P.; Berthier, E.; Raucoules, D.; Casson, B.; Grandjean, P.; Pambrun, C.; Varel, E. Remote-sensing techniques for analysing landslide kinematics: A review. Bull. Soc. Géol. Fr 2007, 178, 89–100.
[4]  Metternicht, G.; Hurni, L.; Gogu, R. Remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sens. Environ 2005, 98, 284–303.
[5]  Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.-T. Landslide inventory maps: New tools for an old problem. Earth Sci. Rev 2012, 112, 42–66.
[6]  Tung, S.-H.; Shih, M.-H.; Sung, W.-P. Identification of the landslide using the satellite images and the digital image correlation method. Disa. Adv 2013, 6, 4–9.
[7]  Van Westen, C.J.; Castellanos, E.; Kuriakose, S.K. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol 2008, 102, 112–131.
[8]  Felicísimo, M.á.; Cuartero, A.; Remondo, J.; Quirós, E. Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: A comparative study. Landslides 2013, 10, 175–189.
[9]  Strozzi, T.; Ambrosi, C.; Raetzo, H. Interpretation of aerial photographs and satellite SAR interferometry for the inventory of landslides. Remote Sens 2013, 5, 2554–2570.
[10]  Chauhan, S.; Sharma, M.; Arora, K.M. Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model. Landslides 2010, 7, 411–423.
[11]  Park, S.; Chio, C.; Kim, B.; Kim, J. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ. Earth Sci 2013, 68, 1443–1464.
[12]  Tofani, V.; Raspini, F.; Catani, F.; Casagli, N. Persistent Scatterer Interferometry (PSI) technique for landslide characterization and monitoring. Remote Sens 2013, 5, 1045–1065.
[13]  Mantovani, F.; Soeters, R.; van Westen, C.J. Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology 1996, 15, 213–225.
[14]  Dunning, S.A.; Rosser, N.J.; Massey, C.I. The integration of terrestrial laser scanning and numerical modeling in landslide investigations. Q. J. Eng. Geol. Hydrogeol 2010, 43, 233–247.
[15]  Gigli, G.; Fanti, R.; Canuti, P.; Casagli, N. Integration of advanced monitoring and numerical modeling techniques for the complete risk scenario analysis of rockslides: The case of Mt. Beni (Florence, Italy). Eng. Geol 2011, 120, 48–59.
[16]  Li, R.; The CSISSD Research Team. Advanced Spatial Sensor Network Systems—Review, Status, and Applications. Proceedings of 2011 International Symposium on Image and Data Fusion, Tengchong, Yunnan, China, 9–11 August 2011.
[17]  Ramesh, M.V. Design, development, and deployment of a wireless sensor network for detection of landslides. Ad Hoc Netw. 2012, doi:10.1016/j.adhoc.2012.09.002.
[18]  Arattano, M.; Marchi, L. Systems and sensors for debris-flow monitoring and warning. Sensors 2008, 8, 2436–2452.
[19]  Angeli, M.; Pasuto, A.; Silvano, S. A critical review of landslide monitoring experiences. Eng. Geol 2000, 55, 133–147.
[20]  Akbarimehr, M.; Motagh, M.; Haghshenas-Haghighi, M. Slope stability assessment of the Sarcheshmeh Landslide, Northeast Iran, investigated using InSAR and GPS observations. Remote Sens 2013, 5, 3681–3700.
[21]  Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards 2012, 61, 1–24.
[22]  Lato, M.J.; Bevan, G.; Fergusson, M. Gigapixel imaging and photogrammetry: Development of a new long range remote imaging technique. Remote Sens 2012, 4, 3006–3021.
[23]  del Ventisette, C.; Ciampalini, A.; Manunta, M.; Calò, F.; Paglia, L.; Ardizzone, F.; Mondini, A.C.; Reichenbach, P.; Mateos, R.M.; Bianchini, S.; et al. Exploitation of large archives of ERS and ENVISAT C-Band SAR data to characterize ground deformations. Remote Sens 2013, 5, 3896–3917.
[24]  Ou, J.; Qiao, G.; Bao, F.; Wang, W.; Di, K.; Li, R. A new method for automatic large scale map updating using mobile mapping imagery. Photogramm. Rec 2013, 28, 240–260.
[25]  Sato, H.P.; Harp, E.L. Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China, using satellite imagery and Google Earth. Landslides 2009, 6, 153–159.
[26]  Bozzano, F.; Cipriani, I.; Mazzanti, P.; Prestininzi, A. Displacement patterns of a landslide affected by human activities: Insights from ground-based InSAR monitoring. Nat. Hazards 2011, 59, 1377–1396.
[27]  Hong, Y.; Adler, R.F. Towards an early-warning system for global landslides triggered by rainfall and earthquake. Int. J. Remote. Sens 2007, 28, 3713–3719.
[28]  Cruden, D.M.; Varnes, D.J. Landslides Types and Processes. In Landslides: Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.;. Transportation Research Board Special Report 247, National Academies Press: Washington, DC, USA, 1996; pp. 36–75.
[29]  Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 1999, 31, 181–216.
[30]  Dai, F.C.; Lee, C.F.; Nhai, Y.Y. Landslide risk assessment and management: An overview. Eng. Geol 2002, 64, 65–87.
[31]  Dai, F.C.; Xu, C.; Yao, X.; Xu, L.; Tu, X.B.; Gong, Q.M. Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan Earthquake, China. J. Asian Earth Sci 2011, 40, 883–895.
[32]  Tang, C.; Zhu, J.; Qi, X.; Ding, J. Landslides induced by the Wenchuan earthquake and the subsequent strong rainfall event: A case study in the Beichuan area of China. Eng. Geol 2011, 122, 22–33.
[33]  Scaioni, M.; Lu, P.; Chen, W.; Qiao, G.; Wu, H.; Feng, T.; Tong, X.; Wang, W.; Li, R. Analysis of spatial sensor network observations during landslide simulation experiments. Eur. J. Environ. Civil. Eng. 2013, doi:10.1080/19648189.2013.822427.
[34]  Qi, S.W.; Xu, Q.; Lan, H.X.; Zhang, B.; Liu, J.Y. Spatial distribution analysis of landslides triggered by 2008.5.12 Wenchuan Earthquake, China. Eng. Geol 2010, 116, 95–108.
[35]  Wang, F.W.; Cheng, Q.G.; Highland, L.; Miyajima, M.; Wang, H.B.; Yan, C.G. Preliminary investigation of some large landslides triggered by the 2008 Wenchuan earthquake, Sichuan Province, China. Landslides 2009, 6, 47–54.
[36]  Qiao, G.; Wang, W.; Wu, B.; Liu, C.; Li, R. Assessment of geo-positioning capability of high-resolution satellite imagery for densely populated high buildings in metropolitan areas. Photogramm. Eng. Remote. Sens 2010, 76, 923–934.
[37]  Lu, P.; Stumpf, A.; Kerle, N.; Casagli, N. Object-oriented change detection for landslide rapid mapping. IEEE Geosci. Remote Sens 2011, 8, 701–705.
[38]  H?lbling, D.; Füreder, P.; Antolini, F.; Cigna, F.; Casagli, N.; Lang, S. A semi-automated object-based approach for landslide detection validated by Persistent Scatterer Interferometry measures and landslide inventories. Remote Sens 2012, 4, 1310–1336.
[39]  Yang, C.J.L.; Ren, X.L.; Huang, H. The vegetation damage assessment of the Wenchuan earthquake of May 2008 using remote sensing and GIS. Nat. Hazards 2012, 62, 45–55.
[40]  Lacroix, P.; Zavala, B.; Berthier, E.; Audin, L. Supervised method of landslide inventory using panchromatic SPOT5 images and application to the earthquake-triggered landslides of Pisco (Peru, 2007, Mw8.0). Remote Sens 2013, 5, 2590–2616.
[41]  Defries, S.R.; Townshend, J.R.G. NDVI-derived land cover classifications at a global scale. Int. J. Remote Sens 1994, 15, 3567–3586.
[42]  Marqués, F.; Gasull, A. Multiresolution Image Segmentation Based on Compound Random Fields: Application to Image Coding; Universitat Politècnica de Catalunya: Barcelona, Spain, 1992; pp. 86–114.
[43]  Tong, H.J.; Maxwell, T.; Zhang, Y.; Dey, V. A supervised and fuzzy-based approach to determine optimal multi-resolution image segmentation parameters. Photogramm. Eng. Remote. Sens 2012, 78, 1029–1044.
[44]  Gorum, T.; Fan, X.M.; van Westen, J.C.; Huang, R.Q.; Xu, Q.; Tang, C.; Wang, G.H. Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 2011, 133, 152–167.
[45]  Conoscenti, C.; Maggio, C.D.; Rotigliano, E. GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy). Geomorphology 2008, 94, 325–339.
[46]  Neuh?user, B.; Damm, B.; Terhorst, B. GIS-based assessment of landslide susceptibility on the base of the Weights-of-Evidence model. Landslides 2012, 9, 511–528.
[47]  Pareek, N.; Sharma, M.L.; Arora, K.M. Impact of seismic factors on landslide susceptibility zonation: A case study in part of Indian Himalayas. Landslides 2010, 7, 191–201.
[48]  Chen, H.; Lin, G.W.; Lu, M.H.; Shih, T.Y.; Horng, M.J.; Wu, S.J.; Chuang, B. Effects of topography, lithology, rainfall and earthquake on landslide and sediment discharge in mountain catchments of southeastern Taiwan. Geomorphology 2011, 133, 132–142.
[49]  Akgun, A. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at ?zmir, Turkey. Landslides 2012, 9, 93–106.
[50]  Othman, A.A.; Gloaguen, R. River courses affected by landslides and implications for hazard assessment: A high resolution remote sensing case study in NE Iraq–W Iran. Remote Sens 2013, 5, 1024–1044.
[51]  Moreiras, S.M. Landslide susceptibility zonation in the Rio Mendoza Valley, Argentina. Geomorphology 2005, 66, 345–357.
[52]  Akgun, A.; Dag, S.; Bulut, F. Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environ. Geol 2008, 54, 1127–1143.
[53]  Ray, R.L.; Jacobs, J.M.; Cosh, M.H. Landslide susceptibility mapping using downscaled AMSR-E soil moisture: A case study from Cleveland Corral, California, US. Remote Sens. Environ 2010, 114, 2624–2636.
[54]  Bartlett, E.B. A stochastic training algorithm for artificial neural networks. Neurocomputing 1994, 6, 31–43.
[55]  Li, Y.; Chen, G.; Tang, C.; Zhou, G.; Zheng, L. Rainfall and earthquake-induced landslide susceptibility assessment using GIS and Artificial Neural Network. Nat. Hazard Earth Syst. Sci 2012, 12, 2719–2729.
[56]  Liu, C.; Li, W.; Wu, H.; Lu, P.; Sang, K.; Sun, W.; Chen, W.; Hong, Y.; Li, R. Susceptibility evaluation and mapping of China’s landslides based on multi-source data. Nat. Hazards 2013, doi:10.1007/s11069-013-0759-y.
[57]  Holmstrom, L.; Koistinen, P. Using additive noise in back-propagation training. IEEE Trans. Neural Netw 1992, 3, 24–38.
[58]  Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd ed ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 1999; p. 823.
[59]  Ma, C.F.; Jiang, L.H. Some research on Levenberg–Marquardt method for the nonlinear equations. Appl. Math. Comput 2007, 184, 1032–1040.
[60]  Lee, S.; Ryu, J.H.; Kim, L.S. Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: Case study of Youngin, Korea. Landslides 2007, 4, 327–338.
[61]  OTEC Communication Technology Co. (Guangzhou, China). Available online http://www.cnotec.cn/1234/html/?18.html (assessed on 3 September 2013).
[62]  Sansoni, G.; Trebeschi, M.; Docchio, F. State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation. Sensors 2009, 9, 568–601.
[63]  NOAA National Weather Service. Available online http://mag.ncep.noaa.gov/ (accessed on 3 September 2013).
[64]  Casagli, N.; Catani, F.; del Ventisette, C.; Luzi, G. Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides 2010, 7, 291–301.
[65]  Tapete, D.; Casagli, N.; Luzi, G.; Fanti, R.; Gigli, G.; Leva, D. Integrating radar and laser-based remote sensing techniques for monitoring structural deformation of archaeological monuments. J. Archaeol. Sci 2013, 40, 176–189.
[66]  Heritage, G.L.; Large, A.R.G. Laser Scanning for the Environmental Sciences; John Wiley & Sons: Chichester, UK, 2009; p. 302.
[67]  Vosselman, G.; Maas, H.G. Airborne and Terrestrial Laser Scanning; Taylor and Francis Group: Boca Raton, FL, USA, 2010; p. 320.
[68]  Eisenbeiss, H.; Sauerbier, M. Investigation of UAV systems and flight modes for photogrammetric applications. Photogramm. Rec 2011, 26, 400–421.
[69]  Tapete, D.; Fanti1, R.; Cecchi, R.; Petrangeli, P.; Casagli, N. Satellite radar interferometry for monitoring and early-stage warning of structural instability in archaeological sites. J. Geophys. Eng 2012, 9, S10–S25.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133