全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Trends in the Start of the Growing Season in?Fennoscandia?1982–2011

DOI: 10.3390/rs5094304

Keywords: phenology, start of the growing season, NDVI time series, NDVI3g, Fennoscandia, vegetation regions, temporal trends

Full-Text   Cite this paper   Add to My Lib

Abstract:

Global temperature is increasing, and this is affecting the vegetation phenology in many parts of the world. In Fennoscandia, as well as Northern Europe, the advances of phenological events in spring have been recorded in recent decades. In this study, we analyzed the start of the growing season within five different vegetation regions in Fennoscandia using the 30-year Global Inventory Modeling and Mapping Studies (GIMMS) NDVI3g dataset. We applied a previously developed pixel-specific Normalized Difference Vegetation Index (NDVI) threshold method, adjusted it to the NDVI3g data and analyzed trends within the different regions. Results show a warming trend with an earlier start of the growing season of 11.8 ± 2.0 days ( p <?0.01) for the whole area. However, there are large regional differences, and the warming/trend towards an earlier start of the growing season is most significant in the southern regions (19.3 ± 4.7 days, p < 0.01 in the southern oceanic region), while the start was stable or modest earlier (two to four days; not significant) in the northern regions. To look for temporal variations in the trends, we divided the 30-year period into three separate decadal time periods. Results show significantly more change/trend towards an earlier start of the growing season in the first period compared to the two last. In the second and third period, the trend towards an earlier start of the growing season slowed down, and in two of the regions, the trend towards an earlier start of the growing season was even reversed during the last?decade.

References

[1]  Xu, L.; Myneni, R.B.; Chapin, F.S., III; Callaghan, T.V.; Pinzon, J.E.; Tucker, C.J.; Zhu, Z.; Bi, J.; Ciais, P.; T?mmervik, H.; et al. Temperature and vegetation seasonality diminishment over Northern Lands. Nat. Clim. Chang 2013, 3, 581–586.
[2]  Moen, A. National Atlas of Norway: Vegetation; Norwegian Mapping Authority: H?nefoss, Norway, 1999; p. 200.
[3]  Karlsen, S.R.; Elvebakk, A.; H?gda, K.A.; Johansen, B. Satellite-based mapping of the growing season and bioclimatic zones in Fennoscandia. Glob. Ecol. Biogeogr 2006, 15, 416–430.
[4]  Karlsen, S.R.; Ramfjord, H.; H?gda, K.A.; Johansen, B.; Danks, F.S.; Brobakk, T.E. A satellite-based map of onset of birch (Betula) flowering in Norway. Aerobiologia 2009, 25, 15–25.
[5]  Menzel, A.; Fabian, P. Growing season extended in Europe. Nature 1999, 397, 659–659.
[6]  Schaber, J.; Badeck, F.-W. Plant phenology in Germany over the 20th century. Reg. Environ. Chang 2005, 5, 37–46.
[7]  Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; Alm-Kubler, K.; Bissolli, P.; Braslavska, O.; Briede, A.; et al. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol 2006, 12, 1969–1976.
[8]  Parmesan, C. Influences of species, latitudes and methodologies on estimates of phonological response to global warming. Glob. Chang. Biol 2007, 13, 1860–1872.
[9]  Karlsen, S.R.; Solheim, I.; Beck, P.S.A.; H?gda, K.A.; Wielgolaski, F.E.; T?mmervik, H. Variability of the start of the growing season in Fennoscandia, 1982–2002. Int. J. Biometereol 2007, 51, 513–524.
[10]  Karlsen, S.R.; H?gda, K.A.; Wielgolaski, F.E.; Tolvanen, A.; Tommervik, H.; Poikolainen, J.; Kubin, E. Growing-season trends in Fennoscandia 1982–2006, determined from satellite and phenology data. Clim. Res 2009, 39, 275–286.
[11]  Bi, J.; Xu, L.; Samanta, A.; Zhu, Z.; Myneni, R.B. Divergent Arctic-Boreal Vegetation Changes between North America and Eurasia over the Past 30 Years. Remote Sens 2013, 5, 2093–2112.
[12]  Karlsson, P.S.; Bylund, H.; Neuvonen, S.; Heino, S.; Tjus, M. Climatic response of budburst in the mountain birch at two areas in northern Fennoscandia and possible responses to global change. Ecography 2003, 26, 617–625.
[13]  Shutova, E.; Wielgolaski, F.E.; Karlsen, S.R.; Makarova, O.; Haraldsson, E.; Aspholm, P.E.; Berlina, N.; Filimonova, T.; Fl?, L.; H?gda, K.A. Growing season in Nordic mountain birch in the northernmost Europe as indicated by long-term field studies and analyses of satellite images. Int. J. Biometorol 2006, 51, 155–166.
[14]  Karlsen, S.R.; Tolvanen, A.; Kubin, E.; Poikolainen, J.; H?gda, K.A.; Johansen, B.; Danks, F.S.; Aspholm, P.; Wielgolaski, F.E.; Makarova, O. MODIS-NDVI based mapping of the length of the growing season in northern Fennoscandia. Int. J. Appl. Earth Obs. Geoinf 2008, 10, 253–266.
[15]  Nordli, ?.; Wielgolaski, F.E.; Bakken, A.K.; Hjeltnes, S.H.; M?ge, F.; Sivle, A.; Skre, O. Regional trends for bud burst and flowering of woody plants in Norway as related to climate change. Int. J. Biometeorol 2008, 52, 625–639.
[16]  Pudas, E.; Lepp?l?, M.; Tolvanen, A.; Poikolainen, J.; Ven?l?inen, A.; Kubin, E. Trends in phenology of Betula pubescens across the boreal zone in Finland. Int. J. Biometeorol 2008, 52, 251–259.
[17]  Wielgolaski, F.E.; Nordli, ?.; Karlsen, S.R.; O’Neill, B. Plant phenological variation in Norway during the 1928–1977 period related to temperature. Int. J. Biometereol 2011, 55, 819–830.
[18]  Zhao, M.F.; Peng, C.H.; Xiang, W.H.; Deng, X.W.; Tian, D.L.; Zhou, X.L.; Yu, G.R.; He, H.L.; Zhao, Z.H. Plant phenological modeling and its application in global climate change research: Overview and future challenges. Environ. Rev 2013, 21, 1–14.
[19]  Menzel, A. Plant phenological anomalies in Germany and their relation to air temperature and NAO. Clim. Chang 2003, 57, 243–263.
[20]  Lloyd, D.A. Phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. Int. J. Remote Sens 1990, 11, 2269–2279.
[21]  Myneni, R.B.; Keeling, C.D.; Tucker, C.J.; Asrar, G.; Nemani, R.R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 1997, 386, 698–702.
[22]  Zhu, W.Q.; Tian, H.Q.; Xu, X.F.; Pan, Y.Z.; Chen, G.S.; Lin, W.P. Extension of the growing season due to delayed autumn over mid and high latitudes in North America during 1982–2006. Glob. Ecol. Biogeogr 2012, 21, 260–271.
[23]  Luo, X.; Chen, X.; Xu, L.; Myneni, R.; Zhu, Z. Assessing performance of NDVI and NDVI3g in monitoring leaf unfolding dates of the deciduous broadleaf forest in Northern China. Remote Sens 2013, 5, 845–861.
[24]  Myneni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens 1995, 33, 481–486.
[25]  Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens 2005, 26, 4485–4498.
[26]  Holben, B. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens 1986, 7, 1417–1434.
[27]  Piao, S.L.; Fang, J.Y.; Zhou, L.M.; Ciais, P.; Zhu, B. Variations in satellite-derived phenology in China’s temperate vegetation. Glob. Chang. Biol 2006, 12, 672–685.
[28]  Bhatt, U.S.; Walker, D.A.; Raynolds, M.K.; Comiso, J.C.; Epstein, H.E.; Jia, G.; Gens, R.; Pinzon, J.E.; Tucker, C.J.; Tweedie, C.E.; et al. Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Interact 2010, 14, 1–20.
[29]  Zhu, Z.; Bi, J.; Pan, Y.; Ganguly, S.; Anav, A.; Xu, L.; Samanta, A.; Piao, S.; Ramakrishna, R.; Nemani, R.R.; et al. Global data sets of vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011. Remote Sens 2013, 5, 927–948.
[30]  Haylock, M.R.; Hofstra, N.; Klein Tank, A.M.G.; Klok, E.J.; Jones, P.D.; New, M. A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res.-Atmos 2008, 113, D20119.
[31]  European Climate Assessment & Dataset Project (ECA&D Project). Available online: http://www.ecad.eu/ (accessed on 15 February 2013).
[32]  H?gda, K.A.; Karlsen, S.R.; Solheim, I. Climatic Change Impact on Growing Season in Fennoscandia Studied by a Time Series of NOAA AVHRR NDVI Data. Proceedings of the Geoscience and Remote Sensing IEEE International Symposium (IGARSS’01), Sydney, NSW, Australia, 9–13 July 2001.
[33]  Zeng, H.; Jia, G.; Epstein, H. Recent changes in phenology over the northern high latitudes detected from multi-satellite data. Environ. Res. Lett 2011, 6, 045508.
[34]  Dyrrdal, A.V.; Isaksen, K.; Hygen, H.O.; Meyer, N.K. Changes in meteorological variables that can trigger natural hazards in Norway. Climate Res 2012, 55, 153–165.
[35]  Barichivich, J.; Briffa, K.R.; Myneni, R.B.; Osborn, T.J.; Melvin, T.M.; Ciais, P.; Piao, L.; Tucker, C. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Glob. Chang. Biol 2013, 19, 3167–3183.
[36]  Guemas, V.; Doblas-Reyes, F.J.; Andreu-Buriollo, I.; Asif, M. Retrospective prediction of the global warming slowdown in the past decade. Nat. Clim. Chang 2013, 3, 649–653.
[37]  Dyrrdal, A.V. Analysis of Past Snow Conditions in Norway—Time Periods 1931–60, 1961–90 and 1979–2008. Met.No Report 10/2010 Climate; Norwegian Meteorological Institute: Oslo, Norway, 2010.
[38]  Loader, N.J.; Jalkanen, R.; Mccarroll, D.; Moberg, A. Spring temperature variability in northern Fennoscandia AD 1693–2011. J. Quat. Sci 2011, 26, 566–570.
[39]  Isaksen, K.; ?deg?rd, R. Strand; Etzelmüller, B.; Hilbich, C.; Hauck, C.; Farbrot, H.; Eiken, T.; Hygen, H.O.; Hipp, T.F. Degrading mountain permafrost in Southern Norway: Spatial and temporal variability of mean ground temperatures, 1999–2009. Permafr. Periglac 2011, 22, 361–377.
[40]  F?rland, E.; Jacobsen, J.S.; Denstadli, J.M.; Hanssen-Bauer, I.; Hygen, H.O.; Lohmann, M.; T?mmervik, H. Cool weather tourism under global warming: Comparing Arctic summer tourists’ weather preferences with regional climate statistics and projections. Tour. Manag 2013, 36, 567–579.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133