The increasingly intensive and extensive coal mining activities on the Loess Plateau pose a threat to the fragile local ecosystems. Quantifying the effects of coal mining activities on environmental conditions is of great interest for restoring and managing the local ecosystems and resources. This paper generates dense NDVI (Normalized Difference Vegetation Index) time series between 2000 and 2011 at a spatial resolution of 30 m by blending Landsat and MODIS (Moderate Resolution Imaging Spectroradiometer) data using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and further evaluates its capability for mapping vegetation trends around a typical coalfield on the Loss Plateau. Synthetic NDVI images were generated using (1) STARFM-generated NIR (near infrared) and red band reflectance data (scheme 1) and (2) Landsat and MODIS NDVI images directly as inputs for STARFM (scheme 2). By comparing the synthetic NDVI images with the corresponding Landsat NDVI, we found that scheme 2 consistently generated better results (0.70?<? R2 < 0.76) than scheme 1 (0.56?<? R2 < 0.70) in this study area. Trend analysis was then performed with the synthetic dense NDVI time series and the annual maximum NDVI (NDVI max) time series. The accuracy of these trends was evaluated by comparing to those from the corresponding MODIS time series, and it was concluded that both the trends from synthetic/MODIS NDVI dense time series and synthetic/MODIS NDVI max time series (2000–2011) were highly consistent. Compared to trends from MODIS time series, trends from synthetic time series are better able to capture fine scale vegetation changes. STARFM-generated synthetic NDVI time series could be used to quantify the effects of mining activities on vegetation, but the test areas should be selected with caution, as the trends derived from synthetic and MODIS time series may be significantly different in some areas.
References
[1]
Comprehensive Management Planning Framework for Loess Plateau Area (2010–2030). Available online: http://www.sdpc.gov.cn/zcfb/zcfbtz/2010tz/W020110117531609590135.pdf (accessed on 29 August 2013).
[2]
Laflen, J.M.; Tian, J.; Huang, C. Soil Erosion and Dryland Farming; CRC Press: Boca Raton, FL, USA, 2000; pp. 1–54.
[3]
Lei, S.; Bian, Z.; Zhang, R.; Li, L. Study on the change rule of groundwater level and its impacts on vegetation at arid mining area. J. Coal Sci. Eng 2007, 13, 179–182.
[4]
Zhang, J.Y.; Guo, L.W.; Gong, J.L.; Zhu, L.Q.; Gong, X.M. Analysis on impacting the soil environment of the underground coal mining. Prog. Min. Sci. Saf. Tech 2007, 8, 1966–1969.
[5]
Zhang, X. Research on Temporal and Spatial Variation for Land Cover in Mining Disturbed Zone (In Chinese)M.Sc. Taiyuan University of Technology, Taiyuan, China, May, 2010.
[6]
Al-Hamdan, M.; Cruise, J.; Rickman, D.; Quattrochi, D. Effects of spatial and spectral resolutions on fractal dimensions in forested landscapes. Remote Sens 2010, 2, 611–640.
[7]
R?der, A.; Udelhoven, T.; Hill, J.; del Barrio, G.; Tsiourlis, G. Trend analysis of Landsat-TM and -ETM+ imagery to monitor grazing impact in a rangeland ecosystem in Northern Greece. Remote Sens. Environ 2008, 112, 2863–2875.
[8]
Stellmes, M.; Udelhoven, T.; R?der, A.; Sonnenschein, R.; Hill, J. Dryland observation at local and regional scale—Comparison of Landsat TM/ETM+ and NOAA AVHRR time series. Remote Sens. Environ 2010, 114, 2111–2125.
[9]
Lasanta, T.; Vicente-Serrano, S.M. Complex land cover change processes in semiarid Mediterranean regions: An approach using Landsat images in northeast Spain. Remote Sens. Environ 2012, 124, 1–14.
[10]
Parent, M.B.; Verbyla, D. The browning of Alaska’s boreal forest. Remote Sens 2010, 2, 2729–2747.
[11]
Matejicek, L.; Kopackova, V. Changes in Croplands as a result of large scale mining and the associated impact on food security studied using time-series landsat images. Remote Sens 2010, 2, 1463–1480.
[12]
Trejo, I.; Dirzo, R. Deforestation of seasonally dry tropical forest: a national and local analysis in Mexico. Biol. Conserv 2000, 94, 133–142.
[13]
Stockli, R.; Vidale, P.L. European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. Int. J. Remote Sens 2004, 25, 3303–3330.
Julien, Y.; Sobrino, J.A. Global land surface phenology trends from GIMMS database. Int. J. Remote Sens 2009, 30, 3495–3513.
[16]
Maignan, F.; Breon, F.M.; Bacour, C.; Demarty, J.; Poirson, A. Interannual vegetation phenology estimates from global AVHRR measurements—Comparison with in situ data and applications. Remote Sens. Environ 2008, 112, 496–505.
[17]
Bai, Z.G.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Proxy global assessment of land degradation. Soil Use Manag 2008, 24, 223–234.
[18]
Fensholt, R.; Rasmussen, K.; Kaspersen, P.; Huber, S.; Horion, S.; Swinnen, E. Assessing land degradation/recovery in the African Sahel from long-term earth observation based primary productivity and precipitation relationships. Remote Sens 2013, 5, 664–686.
[19]
Mao, J.; Shi, X.; Thornton, P.; Hoffman, F.; Zhu, Z.; Myneni, R. Global latitudinal-asymmetric vegetation growth trends and their driving mechanisms: 1982–2009. Remote Sens 2013, 5, 1484–1497.
[20]
de Beurs, K.M.; Henebry, G.M. Trend Analysis of the Pathfinder AVHRR Land (PAL) NDVI—Data for the Deserts of Central Asia. IEEE Geosci. Remote Sens. Lett 2004, 1, 282–286.
[21]
Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens 2006, 44, 2207–2218.
[22]
Bechtel, B.; Zak?ek, K.; Hoshyaripour, G. Downscaling land surface temperature in an urban area: A case study for Hamburg, Germany. Remote Sens 2012, 4, 3184–3200.
[23]
Gao, F.; Kustas, W.; Anderson, M. A data mining approach for sharpening thermal satellite imagery over land. Remote Sens 2012, 4, 3287–3319.
[24]
Wu, P.; Shen, H.; Ai, T.; Liu, Y. Land-surface temperature retrieval at high spatial and temporal resolutions based on multi-sensor fusion. Int. J. Digit. Earth 2013, doi:10.1080/17538947.2013.783131.
[25]
Zurita-Milla, R.; Clevers, J.G.P.W.; Schaepman, M.E. Unmixing-based Landsat TM and MERIS FR data fusion. IEEE Geosci. Remote Sens. Lett 2008, 5, 453–457.
[26]
Wu, M.Q.; Niu, Z.; Wang, C.Y.; Wu, C.Y.; Wang, L. Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model. J. Appl. Remote Sens. 2012, 6, 063507-1–063507-13.
[27]
Acerbi-Junior, F.W.; Clevers, J.; Schaepman, M.E. The assessment of multi-sensor image fusion using wavelet transforms for mapping the Brazilian Savanna. Int. J. Appl. Earth Obs 2006, 8, 278–288.
[28]
Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; McDermid, G.; Masek, J.G.; Gao, F.; White, J.C. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens. Environ 2009, 113, 1613–1627.
[29]
Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ 2012, 122, 2–10.
[30]
Hilker, T.; Wulder, M.A.; Coops, N.C.; Seitz, N.; White, J.C.; Gao, F.; Masek, J.G.; Stenhouse, G. Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. Remote Sens. Environ 2009, 113, 1988–1999.
[31]
Singh, D. Evaluation of long-term NDVI time series derived from Landsat data through blending with MODIS data. Atmosfera 2012, 25, 43–63.
[32]
Walker, J.J.; de Beurs, K.M.; Wynne, R.H.; Gao, F. Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology. Remote Sens. Environ 2012, 117, 381–393.
[33]
Bhandari, S.; Phinn, S.; Gill, T. Preparing Landsat image time series (LITS) for monitoring changes in vegetation phenology in queensland, Australia. Remote Sens 2012, 4, 1856–1886.
[34]
Roy, D.P.; Ju, J.; Lewis, P.; Schaaf, C.; Gao, F.; Hansen, M.; Lindquist, E. Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sens. Environ 2008, 112, 3112–3130.
[35]
Schmidt, M.; Udelhoven, T.; Gill, T.; R?der, A. Long term data fusion for a dense time series analysis with MODIS and Landsat imagery in an Australian Savanna. J. Appl. Remote Sens 2012, 6, 063512-1–063512-18.
[36]
Meng, J.; Du, X.; Wu, B. Generation of high spatial and temporal resolution NDVI and its application in crop biomass estimation. Int. J. Digit. Earth 2011, 6, 203–218.
[37]
Shen, H.; Wu, P.; Liu, Y.; Ai, T.; Wang, Y.; Liu, X. A spatial and temporal reflectance fusion model considering sensor observation differences. Int. J. Remote Sens 2013, 34, 4367–4383.
[38]
Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ 2010, 114, 2610–2623.
[39]
J?nsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci 2004, 30, 833–845.
[40]
Zhao, H.; Wang, Y.J. Research on the factors affecting the classification accuracy of ETM remote sensing image land cover/use (In Chinese). Remote Sens. Tech. Appl 2012, 27, 600–608.
[41]
Fensholt, R.; Proud, S.R. Evaluation of earth observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ 2012, 119, 131–147.
[42]
Xiao, X.M.; Braswell, B.; Zhang, Q.Y.; Boles, S.; Frolking, S.; Moore, B. Sensitivity of vegetation indices to atmospheric aerosols: Continental-scale observations in Northern Asia. Remote Sens. Environ 2003, 84, 385–392.
[43]
Fensholt, R.; Nielsen, T.T.; Stisen, S. Evaluation of AVHRR PAL and GIMMS 10-day composite NDVI time series products using SPOT-4 vegetation data for the African continent. Int. J. Remote Sens 2006, 27, 2719–2733.
[44]
Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett 2006, 3, 68–72.
[45]
Kaufman, Y.J.; Wald, A.E.; Remer, L.A.; Gao, B.-C.; Li, R.-R.; Flynn, L. The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE Trans. Geosci. Remote Sens 1997, 35, 1286–1298.
[46]
Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc 1968, 63, 1379–1389.
[47]
Theil, H. A rank-invariant method of linear and polynomial regression analysis. I, II and III. Nederl. Akad. Wetensch. Proc 1950, 53.
[48]
Rousseeuw, P.J.; Leroy, A.M. Robust Regression and Outlier Detection; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2003.
[49]
Hirsch, R.M.; Slack, J.R. A nonparametric trend test for seasonal data with serial dependence. Water Resour. Res 1984, 20, 727–732.
[50]
Vanbelle, G.; Hughes, J.P. Nonparametric-tests for trend in water-quality. Water Resour. Res 1984, 20, 127–136.
[51]
de Beurs, K.M.; Henebry, G.M. A statistical framework for the analysis of long image time series. Int. J. Remote Sens 2005, 26, 1551–1573.
[52]
Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of Trend Analysis for Monthly Water Quality Data. Water Resour. Res 1982, 18, 107–121.
[53]
de Jong, R.; de Bruin, S.; de Wit, A.; Schaepman, M.E.; Dent, D.L. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ 2011, 115, 692–702.
[54]
Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R.; et al. Greenness in semi-arid areas across the globe 1981–2007—An Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ 2012, 121, 144–158.
[55]
Yin, H.; Udelhoven, T.; Fensholt, R.; Pflugmacher, D.; Hostert, P. How Normalized Difference Vegetation Index (NDVI) trendsfrom Advanced Very High Resolution Radiometer (AVHRR) and Système Probatoire d’Observation de la Terre VEGETATION (SPOT VGT) time series differ in agricultural areas: An inner mongolian case study. Remote Sens 2012, 4, 3364–3389.
[56]
Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259.
[57]
Kendall, M.G. Rank Correlation Methods, 4th ed ed.; Charles Griffin: London, UK, 1975.
[58]
Wang, X.L.L.; Swail, V.R. Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. J.. Climate 2001, 14, 2204–2221.
[59]
Mirkin, B. Eleven ways to look at the chi-squared coefficient for contingency tables. Am. Stat 2001, 55, 111–120.
[60]
Bhandari, S.; Phinn, S.; Gill, T. Assessing viewing and illumination geometry effects on the MODIS vegetation index (MOD13Q1) time series: implications for monitoring phenology and disturbances in forest communities in Queensland, Australia. Int. J. Remote Sens 2011, 32, 7513–7538.