全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra

DOI: 10.3390/rs5094229

Keywords: AVHRR NDVI3g, tundra vegetation, climate variability, sea ice, Arctic

Full-Text   Cite this paper   Add to My Lib

Abstract:

Vegetation productivity trends for the Arctic tundra are updated for the 1982–2011 period and examined in the context of land surface temperatures and coastal sea ice. Understanding mechanistic links between vegetation and climate parameters contributes to model advancements that are necessary for improving climate projections. This study employs remote sensing data: Global Inventory Modeling and Mapping Studies (GIMMS) Maximum Normalized Difference Vegetation Index (MaxNDVI), Special Sensor Microwave Imager (SSM/I) sea-ice concentrations, and Advanced Very High Resolution Radiometer (AVHRR) radiometric surface temperatures. Spring sea ice is declining everywhere except in the Bering Sea, while summer open water area is increasing throughout the Arctic. Summer Warmth Index (SWI—sum of degree months above freezing) trends from 1982 to 2011 are positive around Beringia but are negative over Eurasia from the Barents to the Laptev Seas and in parts of northern Canada. Eastern North America continues to show increased summer warmth and a corresponding steady increase in MaxNDVI. Positive MaxNDVI trends from 1982 to 2011 are generally weaker compared to trends from 1982–2008. So to better understand the changing trends, break points in the time series were quantified using the Breakfit algorithm. The most notable break points identify declines in SWI since 2003 in Eurasia and 1998 in Western North America. The Time Integrated NDVI (TI-NDVI, sum of the biweekly growing season values of MaxNDVI) has declined since 2005 in Eurasia, consistent with SWI declines. Summer (June–August) sea level pressure (slp) averages from 1999–2011 were compared to those from 1982–1998 to reveal higher slp over Greenland and the western Arctic and generally lower pressure over the continental Arctic in the recent period. This suggests that the large-scale circulation is likely a key contributor to the cooler temperatures over Eurasia through increased summer cloud cover and warming in Eastern North America from more cloud-free skies.

References

[1]  Myneni, R.B.; Keeling, C.D.; Tucker, C.J.; Asrar, G.; Nemani, R.R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 1997, 386, 698–702.
[2]  Jia, G.J.; Epstein, H.E.; Walker, D.A. Greening of arctic Alaska, 1981–2001. Geophys. Res. Lett 2003, 30, 2067.
[3]  Stow, D.A.; Hope, A.; McGuire, D.; Verbyla, D.; Gamon, J.; Huemmrich, F.; Houston, S.; Racine, C.; Sturm, M.; Tape, K.; et al. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sens. Environ 2004, 89, 281–308.
[4]  Goetz, S.J.; Bunn, A.G.; Fiske, G.J.; Houghton, R.A. Satellite-observed photosnthetic trends across boreal North America associated with climate and fire disturbance. Proc. Natl. Acad. Sci. USA 2005, 102, 13521–13525.
[5]  Bunn, A.G.; Goetz, S.J.; Kimball, J.S.; Zhang, K. Northern high-latitude ecosystems respond to climate change. EOS Trans. AGU 2007, 88, 333–340.
[6]  Verbyla, D. The greening and browning of Alaska based on 1982–2003 satellite data. Glob. Ecol. Biogeogr 2008, 17, 547–555.
[7]  Walker, D.A.; Bhatt, U.S.; Comiso, J.C.; Epstein, H.E.; Gould, W.A.; Henry, G.H.R.; Jia, G.J.; Kokelj, S.V.; Lantz, T.C.; Mercado-Diaz, J.A.; et al. Arctic. Land: Vegetation, in state of the climate in 2010. Bull. Am. Meteorol. Soc 2011, 92, S150–S152.
[8]  Xu, L.; Myneni, R.B.; Chapin, F.S., III; Callaghan, T.V.; Pinzon, J.E.; Tucker, C.J.; Zhu, Z.; Bi, J.; Ciais, P.; Tommervik, H.; et al. Temperature and vegetation seasonality diminishment over northern lands. Nat. Clim. Chang 2013, 3, 1–6.
[9]  Shippert, M.M.; Walker, D.A.; Auerbach, N.A.; Lewis, B.E. Biomass and leaf-area index maps derived from SPOT images for Toolik Lake and Imnavait Creek areas. Alsk. Polar Rec 1995, 31, 147–154.
[10]  Walker, D.A.; Epstein, H.E.; Jia, G.J.; Balser, A.; Copass, C.; Edwards, E.J.; Gould, W.A.; Hollingsworth, J.; Knudson, J.; Maier, H.A. Phytomass, LAI, and NDVI in northern Alaska: Relationships to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic. J. Geophys. Res.-Oceans 2003, 108, 8169.
[11]  Raynolds, M.K.; Walker, D.A.; Epstein, H.E.; Pinzon, J.E.; Tucker, C.J. A vegetation map of the arctic tundra biome (1:1,750,000 scale): II. Analysis of the dstribution of phytomass and vegetation types. J. Veg. Sci 2004, 3, 403–411.
[12]  Epstein, H.E.; Raynolds, M.K.; Walker, D.A.; Bhatt, U.S.; Tucker, C.J.; Pinzon, J.E. Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades. Environ. Res. Lett 2012, doi:10.1088/1748-9326/7/1/015506.
[13]  Bekryaev, R.V.; Polyakov, I.V.; Alexeev, V.A. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J. Clim 2010, 23, 3888–3906.
[14]  Bhatt, U.S.; Walker, D.A.; Raynolds, M.K.; Comiso, J.C.; Epstein, H.E.; Jia, G.; Gens, R.; Pinzon, J.E.; Tucker, C.J.; Tweedie, C.E.; et al. Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Interact 2010, 14, 1–20.
[15]  Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang 2011, 77, 85–96.
[16]  Dutrieux, L.P.; Bartholomeus, H.; Herold, M.; Verbesselt, J. Relationships between declining summer sea ice, increasing temperatures and changing vegetation in the Siberian Arctic tundra from MODIS time series (2000–11). Environ. Res. Lett 2012, 7, 044028.
[17]  Lawrence, D.M.; Slater, A.G.; Tomas, R.A.; Holland, M.M.; Deser, C. Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophys. Res. Lett 2008, 35, L11506.
[18]  Bhatt, U.S.; Alexander, M.A.; Deser, C.; Walsh, J.E.; Miller, J.S.; Timlin, M.S.; Scott, J.; Tomas, R.A. The Atmospheric Response to Realistic Reduced Summer Arctic Sea Ice Anomalies. In Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications; DeWeaver, E.T., Bitz, C.M., Tremblay, L.-B., Eds.; American Geophysical Union: Washington, DC, USA, 2008; pp. 91–110.
[19]  Higgins, M.E.; Cassano, J.J. Northern Alaskan land surface response to reduced Arctic sea ice extent. Clim. Dyn 2012, 38, 2099–2113.
[20]  Hu, F.S.; Higuera, P.E.; Walsh, J.E.; Chapman, W.L.; Duffy, P.A.; Brubaker, L.B.; Chipman, M.L. Tundra burning in Alaska: Linkages to climatic change and sea ice retreat. J. Geophys. Res.-Oceans 2010, 115, G04002.
[21]  Walker, D.A.; Raynolds, M.K.; Dani?ls, F.J.A.; Einarsson, E.; Elvebakk, A.; Gould, W.A.; Katenin, A.E.; Kholod, S.S.; Markon, C.J.; Melnikov, E.S.; et al. The circumpolar arctic vegetation map. J. Veg. Sci 2005, 16, 267–282.
[22]  Raynolds, M.K.; Walker, D.A.; Maier, H.A. Effects of deglaciation on circumpolar distribution of arctic vegetation. Remote Sens. Environ 2009, 102, 271–281.
[23]  Elmendorf, S.C.; Henry, G.H.R.; Hollister, R.D.; Bjork, R.G.; Bjorkman, A.D.; Callaghan, T.V.; Collier, L.S.; Cooper, E.J.; Cornelissen, J.H.C.; Day, T.A.; et al. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol. Lett 2012, 15, 164–175.
[24]  Walker, D.A.; Leibman, M.O.; Epstein, H.E.; Forbes, B.C.; Bhatt, U.S.; Raynolds, M.K.; Comiso, J.C.; Gubarkov, A.A.; Khomutov, A.V.; Jia, G.J.; et al. Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: Interactions of ecological and social factors affecting the Arctic normalized difference vegetation index. Environ. Res. Lett 2009, 4, 045004.
[25]  Walker, D.A.; Forbes, B.C.; Leibman, M.O.; Epsteiin, H.E.; Bhatt, U.S.; Comiso, J.C.; Drozdov, D.S.; Gubarkov, A.A.; Jia, G.J.; Karleja?rvi, E.; et al. Cumulative Effects of Rapid Land-Cover and Land-Use Changes on the Yamal Peninsula, Russia. In Eurasian Arctic Land Cover and Land Use in a Changing Climate; Gutman, G., Groismann, P., Reissel, A., Eds.; Springer Verlag: Berlin/Heidelberg, Germany, 2011.
[26]  Hudson, J.M.G.; Henry, G.H.R. Increased plant biomass in a High Arctic heath community from 1981 to 2008. Ecology 2009, 90, 2657–2663.
[27]  Elmendorf, S.C.; Henry, G.H.R.; Hollister, R.D.; Bj?rk, R.G.; Boulanger-Lapointe, N.; Cooper, E.J.; Cornelissen, J.H.C.; Day, T.A.; Dorrepaal, E.; Elumeeva, T.G.; et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Chang 2012, 2, 453–457.
[28]  Tape, K.; Sturm, M.; Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Chang. Biol 2006, 12, 686–702.
[29]  Tape, K.D.; Hallinger, M.; Welker, J.M.; Ruess, R.W. Landscape heterogeneity of shrub expansion in Arctic Alaska. Ecosystems 2012, 15, 711–724.
[30]  Myers-Smith, I.H.; Forbes, B.C.; Wilmking, M.; Hallinger, M.; Lantz, T.; Blok, D.; Tape, K.D.; Macias-Fauria, M.; Sass-Klaassen, U.; Lévesque, E.; et al. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environ. Res. Lett 2011, 6, 045509.
[31]  Forbes, B.C.; Fauria, M.M.; Zetterberg, P. Russian Arctic warming and “greening” are closely tracked by tundra shrub willows. Glob. Chang. Biol 2010, 16, 1542–1554.
[32]  Macias-Fauria, M.; Forbes, B.C.; Zetterberg, P.; Kumpula, T. Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems. Nat. Clim. Chang 2012, 2, 613–618.
[33]  Parmentier, F.-J.W.; Christensen, T.R.; S?rensen, L.L.; Rysgaard, S.; McGuire, A.D.; Miller, P.A.; Walker, D.A. The impact of lower sea-ice extent on Arctic greenhouse-gas exchange. Nat. Clim. Chang 2013, 3, 195–202.
[34]  Zhang, J.; Walsh, J.E. Thermodynamic and hydrological impacts of increasing greenness in northern high latitudes. J. Hydrometeorol 2006, 7, 1147–1163.
[35]  Jeong, J.-H.; Kug, J.-S.; Kim, B.-M.; Min, S.-K.; Linderholm, H.W.; Ho, C.-H.; Rayner, D.; Chen, D.; Jun, S.-Y. Greening in the circumpolar high-latitude may amplify warming in the growing season. Clim. Dyn 2011, 38, 1421–1431.
[36]  Ogi, M.; Wallace, J.M. Summer minimum Arctic sea ice extent and the associated summer atmospheric circulation. Geophys. Res. Lett. 2007, doi:10.1029/2007GL029897.
[37]  Walker, D.A.; Bhatt, U.S.; Epstein, H.E.; Bieniek, P.; Comiso, J.; Frost, G.V.; Pinzon, J.; Raynolds, M.K.; Tucker, C.J. Changing Arctic tundra vegetation biomass and Greenness. Bull. Am. Meteorol. Soc 2012, 93, S138–S139.
[38]  Walker, D.A.; Epstein, H.E.; Raynolds, M.K.; Kuss, P.; Kopecky, M.A.; Frost, G.V.; Dani?ls, F.J.A.; Leibman, M.O.; Moskalenko, N.G.; Matyshak, G.V.; et al. Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects. Environ. Res. Lett 2012, 7, 015504.
[39]  Comiso, J.C.; Nishio, F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res. 2008, doi:10.1029/2007JC004257.
[40]  Comiso, J.C. Warming trends in the Arctic from clear sky satellite observations. J. Clim 2003, 16, 3498–3510.
[41]  Global Inventory Modeling and Mapping Studies (GIMMS). Available online: http://gcmd.nasa.gov/records/GCMD_GLCF_GIMMS.html (Accessed on 18 August 2013).
[42]  Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ 2002, 83, 195–213.
[43]  Tucker, C.J.; Sellers, P.J. Satellite remote sensing of primary production. Int. J. Remote Sens 1986, 7, 1395–1416.
[44]  Treshnikov, A.F. Atlas of the Arctic (in Russian); Treshnikov, A.F.E., Ed.; Administrator of Geodesy and Cartography of the Soviet Ministry: Moscow, Russia, 1985.
[45]  Mudelsee, M. Climate Time Series Analysis; Springer: Dordrecht, The Netherlands, 2010; Volume 42.
[46]  Mudelsee, M. Break function regression. Eur. Phys. J. Spec. Top 2009, 174, 49–63.
[47]  Walker, D.A.; Bhatt, U.S.; Comiso, J.C.; Epstein, H.E.; Gould, W.A.; Henry, G.H.R.; Jia, G.J.; Kokelj, S.V.; Lantz, T.C.; Mercado-Díaz, J.A.; et al. Arctic: Land: Vegetation (in “State of the Climate in 2009”). Bull. Am. Meteorol. Soc 2010, 91, S79–S82.
[48]  Matthewman, N.J.; Magnusdottir, G. Observed interaction between Pacific sea ice and the Western Pacific pattern on intraseasonal time scales. J. Clim 2011, 24, 5031–5042.
[49]  Comiso, J.C. Large decadal decline of the Arctic multiyear ice cover. J. Clim 2012, 25, 1176–1193.
[50]  Comiso, J.C. Polar Oceans from Space; Springer: New York, NY, USA, 2010; pp. 1–12.
[51]  Bulygina, O.N.; Razuvaev, V.N.; Korshunova, N.N. Changes in snow cover over Northern Eurasia in the last few decades. Environ. Res. Lett 2009, 4, 045026.
[52]  Cohen, J.L.; Furtado, J.C.; Barlow, M.A.; Alexeev, V.A.; Cherry, J.E. Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett 2012, 7, 014007.
[53]  Liu, J.; Curry, J.A.; Wang, H.; Song, M.; Horton, R.M. Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA 2012, 109, 4074–4079.
[54]  Brown, R.D.; Derksen, C. Is Eurasian October snow cover extent increasing? Environ. Res. Lett 2013, 8, 024006.
[55]  Polyakov, I.V.; Bhatt, U.S.; Walsh, J.E.; Abrahamsen, E.P. Recent oceanic changes in the Arctic in the context of longer term observations. Ecol. Appl. 2013, doi:10.1890/11-0902.1.
[56]  Liu, Y.; Key, J.R.; Liu, Z.; Wang, X.; Vavrus, S.J. A cloudier Arctic expected with diminishing sea ice. Geophys. Res. Lett. 2012, doi:10.1029/2012GL05125.
[57]  Comiso, J.C. Arctic warming signals from satellite observations. Weather 2006, 61, 70–76.
[58]  Tang, Q.; Leng, G. Damped summer warming accompanied with cloud cover increase over Eurasia from 1982 to 2009. Environ. Res. Lett 2012, 7, 014004.
[59]  Bieniek, P.A. Assessing River Ice Breakup Date, Coastal Tundra Vegetation and Climate Divisions in the Context of Alaska Climate Variability; University of Alaska Fairbanks: Fairbanks, AK, USA, 2012.
[60]  Brown, R.. Personal Communication, Montreal, QC, Canada,2013.
[61]  Callaghan, T.V.; Johansson, M.; Brown, R.D.; Groisman, P.Y.; Labba, N.; Radionov, V.; Bradley, R.S.; Blangy, S.; Bulygina, O.N.; Christensen, T.R.; et al. Multiple effects of changes in Arctic snow cover. AMBIO 2012, 40, 32–45.
[62]  Bhatt, U.S.; Walker, D.A.; Raynolds, M.A.; Epstein, H.E.; Pinzon, J.E.; Tucker, C.J.; Comiso, J.C.; Bieniek, P.A.; Mike, S. Seasonality of Arctic Tundra Greening. Earth Interact 2010.
[63]  Ogi, M.; Rigor, I.G. Trends in Arctic sea ice and the role of atmospheric circulation. Atmos. Sci. Lett 2013, 14, 97–101.
[64]  Easterling, D.R.; Wehner, M.F. Is the climate warming or cooling? Geophys. Res. Lett 2009, 36, L08706.
[65]  Meehl, G.A.; Arblaster, J.M.; Fasullo, J.T.; Hu, A.; Trenberth, K.E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Chang 2011, 1, 360–364.
[66]  Pinzon, J.. Personal Communication, Greenbelt, MD, USA,2013.
[67]  Fensholt, R.; Proud, S.R. Evaluation of Earth Observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ 2012, 119, 131–147.
[68]  Forkel, M.; Carvalhais, N.; Verbesselt, J.; Mahecha, M.; Neigh, C.; Reichstein, M. Trend change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sens 2013, 5, 2113–2144.
[69]  Jong, R.; Verbesselt, J.; Schaepman, M.E.; Bruin, S. Trend changes in global greening and browning: Contribution of short-term trends to longer-term change. Glob. Chang. Biol 2011, 18, 642–655.
[70]  Alexeev, V.A.; Langen, P.L.; Bates, J.R. Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Clim. Dyn 2005, 24, 655–666.
[71]  Zhang, X.; He, J.; Zhang, J.; Polyakov, I.; Gerdes, R.; Inoue, J.; Wu, P. Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nat. Clim. Chang 2012, 3, 47–51.
[72]  Moore, G.W.K. Decadal variability and a recent amplification of the summer Beaufort Sea High. Geophys. Res. Lett. 2012, doi:10.1029/2012GL051570.
[73]  Stegall, S.T.; Zhang, J. Wind field climatology, changes, and extremes in the Chukchi—Beaufort Seas and Alaska North Slope during 1979—2009. J. Clim 2012, 25, 8075–8089.
[74]  Zhang, X.; Sorteberg, A.; Zhang, J.; Gerdes, R.; Comiso, J.C. Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys. Res. Lett 2008, 35, L22701.
[75]  Ogi, M.; Yamazaki, K. Trends in the summer Northern Annular Mode and Arctic sea ice. SOLA 2010, 6, 41–44.
[76]  Liu, L.. Personal Communication, Madison, WI, USA,2013.
[77]  NOAA/ESRL Physical Sciences Division, Boulder Colorado. Available online: http://www.esrl.noaa.gov/psd/ (accessed on 18 August 2013).
[78]  Urban, M.; Eberle, J.; Hüttich, C.; Schmullius, C.; Herold, M. Comparison of satellite-derived land surface temperature and air temperature from meteorological stations on the pan-Arctic Scale. Remote Sens 2013, 5, 2348–2367.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133