The advent of satellite data has provided a source of independent information to monitor trends in tropospheric nitrogen dioxide levels. To interpret these trends, one needs to know the sensitivity of the satellite retrieved NO 2 column to anthropogenic emissions. We have applied a chemistry transport model to investigate the sensitivity of the modeled NO 2 column, sampled at the OMI (Ozone Monitoring Instrument) overpass time and location and weighted by the OMI averaging kernel, to emission sources across Europe. The most important contribution (~35%) in Western Europe is made by road transport. Off-road transport and industrial combustion each contribute 10%–15% across continental Europe. In Eastern Europe, power plant contributions are of comparable magnitude as those of road transport. To answer the question if the OMI-NO 2 trends can be translated directly into emission changes, we assessed the anticipated changes in OMI-NO 2 between 2005 and 2020. Although the results indicated that for many countries, it is indeed possible, for medium- and small-sized coastal countries, the contribution of the increasing shipping emissions in adjacent sea areas may mask a significant part of national emission reductions. This study highlights the need for a combined use of models, a priori emission estimates and satellite data to verify emission trends.
References
[1]
Crutzen, P.J. The role of NO and NO2 in the chemistry of the Troposphere and Stratosphere. Ann. Rev. Earth Planet. Sci 1979, 7, 443–472.
[2]
Sunyer, J.; Spix, C.; Quénel, P.; Ponce-de-León, A.; P?nka, A.; Barumandzadeh, T.; Touloumi, G.; Bacharova, L.; Wojtyniak, B.; Vonk, J.; et al. Urban air pollution and emergency admissions for Asthma in four European Cities: The APHEA Project. Thorax 1997, 52, 760–765.
[3]
Searl, A. A Review of the Acute and Long Term Impacts of Exposure to Nitrogen Dioxide in the United Kingdom. Research Report TM/04/03; Institute of Occupational Medicine: Edinburgh, UK, 2004.
[4]
Van Dingenen, R.; Dentener, F.J.; Raes, F.; Krol, M.C.; Emberson, L.; Cofala, J. The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos. Environ 2009, 43, 604–618.
[5]
Solomon, S.; Portmann, R.W.; Sanders, R.W.; Daniel, J.S.; Madsen, W.; Bartram, B.; Dutton, E.G. On the role of nitrogen dioxide in the absorption of solar radiation. J. Geophys. Res. D: Atmos 1999, 104, 12047–12058.
[6]
Schaap, M.; Müller, K.; Ten Brink, H.M. Constructing the European aerosol nitrate concentration field from quality analysed data. Atmos. Environ 2002, 36, 1323–1335.
[7]
Ten Brink, H.M.; Kruisz, C.; Kos, G.P.A.; Berner, A. Composition/size of the light-scattering aerosol in the Netherlands. Atmos. Environ 1997, 31, 3955–3962.
[8]
Bobbink, R.; Hornung, M.; Roelofs, J.G.M. The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J. Ecol 1998, 86, 717–738.
[9]
Sch?pp, W.; Amann, M.; Cofala, J.; Heyes, C.; Klimont, Z. Integrated assessment of European air pollution emission control strategies. Environ. Model. Softw 1999, 14, 1–9.
[10]
T?rseth, K.; Aas, W.; Breivik, K.; Fjeraa, A.M.; Fiebig, M.; Hjellbrekke, A.G.; Lund Myhre, C.; Solberg, S.; Yttri, K.E. Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmos. Chem. Phys 2012, 12, 5447–5481.
[11]
Burrows, J.P.; Weber, M.; Buchwitz, M.; Rozanov, V.; Ladst?tter-Wei?enmayer, A.; Richter, A.; Debeek, R.; Hoogen, R.; Bramstedt, K.; Eichmann, K.-U.; et al. The Global Ozone Monitoring Experiment (GOME): Mission concept and first scientific results. J. Atmos. Sci 1999, 56, 151–175.
[12]
Levelt, P.F.; Van Den Oord, G.H.J.; Dobber, M.R.; M?lkki, A.; Visser, H.; de Vries, J.; Stammes, P.; Lundell, J.O.V.; Saari, H. The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens 2006, 44, 1093–1100.
[13]
Bovensmann, H.; Burrows, J.P.; Buchwitz, M.; Frerick, J.; No?l, S.; Rozanov, V.V.; Chance, K.V.; Goede, A.P.H. SCIAMACHY: Mission objectives and measurement modes. J. Atmos. Sci 1999, 56, 127–150.
[14]
Van der A., R.J.; Eskes, H.J.; Boersma, K.F.; van Noije, T.P.C.; van Roozendael, M.; de Smedt, I.; Peters, D.H.M.U.; Meijer, E.W. Trends, seasonal variability and dominant NOx source derived from a ten year record of NO2 measured from space. J. Geophys. Res. D: Atmos 2008, 113, D04302.
[15]
Konovalov, I.B.; Beekmann, M.; Richter, A.; Burrows, J.P.; Hilboll, A. Multi-annual changes of NOx emissions in megacity regions: Nonlinear trend analysis of satellite measurement based estimates. Atmos. Chem. Phys 2010, 10, 8481–8498.
[16]
Zhou, Y.; Brunner, D.; Hueglin, C.; Henne, S.; Staehelin, J. Changes in OMI Tropospheric NO2 columns over Europe from 2004 to 2009 and the influence of meteorological variability. Atmos. Environ 2012, 46, 482–495.
[17]
Curier, R.L.; Kranenburg, R.; Segers, A.J.; Timmermans, R.M.A.; Schaap, M. Synergistic use of LOTOS-EUROS and OMI-NO2 Tropospheric Columns to evaluate the NOx emission trends across Europe. Atmos. Environ. 2013. Submitted.
[18]
Castellanos, P.; Boersma, K.F. Reductions in Nitrogen Oxides over Europe driven by environmental policy and economic recession. Sci. Reports 2012, 2, 265.
[19]
Russell, A.R.; Valin, L.C.; Cohen, R.C. Trends in OMI NO2 observations over the United States: Effects of emission control technology and the economic recession. Atmos. Chem. Phys 2012, 12, 12197–12209.
[20]
Beirle, S.; Boersma, K.F.; Platt, U.; Lawrence, M.G.; Wagner, T. Megacity emissions and lifetimes of Nitrogen Oxides probed from space. Science 2011, 333, 1737–1739.
[21]
Beirle, S.; Platt, U.; Wenig, M.; Wagner, T. Weekly cycle of NO2 by GOME measurements: A signature of anthropogenic sources. Atmos. Chem. Phys 2003, 3, 2225–2232.
[22]
Pouliot, G.; Pierce, T.; Denier van der Gon, H.; Schaap, M.; Moran, M.; Nopmongcol, U. Comparing emission inventories and model-ready emission datasets between Europe and North America for the AQMEII Project. Atmos. Environ 2012, 53, 4–14.
[23]
Manders, A.M.M.; Schaap, M.; Hoogerbrugge, R. Testing the capability of the chemistry transport model LOTOS-EUROS to forecast PM10 levels in the Netherlands. Atmos. Environ 2009, 43, 4050–4059.
[24]
Beltman, J.B.; Hendriks, C.; Tum, M.; Schaap, M. The impact of large scale biomass production on ozone air pollution in Europe. Atmos. Environ 2013, 71, 352–363.
[25]
Schaap, M.; Van Loon, M.; Ten Brink, H.; Dentener, F.J.; Builtjes, P. Secondary inorganic aerosol simulations for Europe with special attention to nitrate. Atmos. Chem. Phys 2004, 4, 857–874.
[26]
Schaap, M.; Timmermans, R.M.A.; Roemer, M.; Boersen, G.A.C.; Builtjes, P.J.H.; Sauter, F.J.; Velders, G.J.M.; Beck, J.P. The LOTOS-EUROS Model: Description, validation and latest developments. Int. J. Environ. Pollut 2008, 32, 270–290.
[27]
Curier, R.L.; Timmermans, R.; Calabretta-Jongen, S.; Eskes, H.; Segers, A.; Swart, D.; Schaap, M. Improving ozone forecasts over Europe by synergistic use of the LOTOS-EUROS chemical transport model and in situ measurements. Atmos. Environ 2012, 60, 217–226.
[28]
Solazzo, E.; Bianconi, R.; Vautard, R.; Appel, K.W.; Moran, M.D.; Hogrefe, C.; Bessagnet, B.; Brandt, J.; Christensen, J.H.; Chemel, C. Model evaluation and ensemble modelling of surface-level ozone in Europe and North America in the context of AQMEII. Atmos. Environ 2012, 53, 60–74.
[29]
Van Loon, M.; Vautard, R.; Schaap, M.; Bergstr?m, R.; Bessagnet, B.; Brandt, J.; Builtjes, P.; Christensen, J.H.; Cuvelier, C.; Graff, A. Evaluation of long-term ozone simulations from seven Regional Air Quality Models and their ensemble. Atmos. Environ 2007, 41, 2083–2097.
[30]
Vautard, R.; Builtjes, P.H.J.; Thunis, P.; Cuvelier, C.; Bedogni, M.; Bessagnet, B.; Honoré, C.; Moussiopoulos, N.; Pirovano, G.; Schaap, M.; et al. Evaluation and intercomparison of ozone and PM10 simulations by several Chemistry Transport Models over four European Cities within the CityDelta Project. Atmos. Environ 2007, 41, 173–188.
[31]
Solazzo, E.; Bianconi, R.; Pirovano, G.; Matthias, V.; Vautard, R.; Moran, M.D.; Appel, K.W.; Bessagnet, B.; Brandt, J.; Christensen, J.H. Operational model evaluation for particulate matter in Europe and North America in the context of AQMEII. Atmos. Environ 2012, 53, 75–92.
[32]
Stern, R.; Builtjes, P.; Schaap, M.; Timmermans, R.; Vautard, R.; Hodzic, A.; Memmesheimer, M.; Feldmann, H.; Renner, E.; Wolke, R. A model inter-comparison study focussing on Episodes with elevated PM10 concentrations. Atmos. Environ 2008, 42, 4567–4588.
[33]
Thunis, P.; Rouil, L.; Cuvelier, C.; Stern, R.; Kerschbaumer, A.; Bessagnet, B.; Schaap, M.; Builtjes, P.; Tarrason, L.; Douros, J. Analysis of model responses to emission-reduction scenarios within the CityDelta Project. Atmos. Environ 2007, 41, 208–220.
[34]
Walcek, C.J. Minor flux adjustment near mixing ratio extremes for simplified yet highly accurate monotonic calculation of tracer advection. J. Geophys. Res. D: Atmos 2000, 105, 9335–9348.
[35]
Whitten, G.; Hogo, H.; Killus, J. The carbon bond mechanism for photochemical smog. Env. Sci. Techn 1980, 14, 14690–14700.
[36]
Fountoukis, C.; Nenes, A. ISORROPIAII: A computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42?-NO3?-Cl?-H2O aerosols. Atmos. Chem. Phys 2007, 7, 4639–4659.
[37]
Banzhaf, S.; Schaap, M.; Kerschbaumer, A.; Reimer, E.; Stern, R.; Van Der Swaluw, E.; Builtjes, P. Implementation and evaluation of pH-dependent cloud chemistry and wetdeposition in the chemical transport model REM-Calgrid. Atmos. Environ 2012, 49, 378–390.
[38]
Erisman, J.W.; Van Pul, A.; Wyers, P. Parametrization of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone. Atmos. Environ 1994, 28, 2595–2607.
[39]
Simpson, D.; Fagerli, H.; Jonson, J.E.; Tsyro, S.; Wind, P.; Tuovinen, J.-P. Transboundary Acidification and Eutrophication and Ground Level Ozone in Europe: Unified EMEP Model Description. EMEP Status Report 1/03 Part I 2003; EMEP-MSC-West: Oslo, Norway, 2003.
[40]
Kranenburg, R.; Segers, A.J.; Hendriks, C.; Schaap, M. Source apportionment using LOTOS-EUROS: Module description and evaluation. Geosci. Model Dev 2013, 6, 721–733.
[41]
Wagstrom, K.M.; Pandis, S.N.; Yarwood, G.; Wilson, G.M.; Morris, R.E. Development and application of a computationally efficient particulate matter apportionment algorithm in a three-dimensional Chemical Transport Model. Atmos. Environ 2008, 42, 5650–5659.
[42]
Kuenen, J.; Denier van der Gon, H.; Visschedijk, A.; van der Brugh, H.; van Gijlswijk, R. MACC European Emission Inventory for the Years 2003–2007. TNO Report TNO-060-UT-2011-00588; TNO: Utrecht, The Netherlands, 2011.
[43]
Jozwicka, M.; JKuenen, J.P.; Denier van der Gon, H.A.C.; Visschedijk, A.J.H.; van Gijlswijk, R.N. Gridded Anthropogenic European Emission Data for the Base Year 2005 and Projection Years 2020, 2025 and 2030. TNO report TNO-060-UT-2012-01013; TNO: Utrecht, The Netherlands, 2012.
[44]
Builtjes, P.J.H.; van Loon, M.; Schaap, M.; Teeuwisse, S.; Visschedijnk, A.J.H.; Bloos, J.P. Project on the Modelling and Verification of Ozone Reduction Strategies: Contribution of TNO-MEP. TNO-Report, MEP-R2003/166; TNO: Apeldoorn, The Netherlands, 2003.
[45]
Cuvelier, C.; Thunis, P.; Vautard, R.; Amann, M.; Bessagnet, B.; Bedogni, M.; Berkowicz, R.; Brandt, J.; Brocheton, F.; Builtjes, P. CityDelta: A model intercomparison study to explore the impact of emission reductions in European cities in 2010. Atmos. Environ 2007, 41, 189–207.
[46]
Boersma, K.F.; Eskes, H.J.; Veefkind, J.P.; Brinksma, E.J.; van der A, R.J.; Sneep, M.; van den Oord, G.H.J.; Levelt, P.F.; Stammes, P.; Gleason, J.F.; et al. Near-real time retrieval of Tropospheric NO2 from OMI. Atmos. Chem. Phys 2007, 7, 2103–2118.
[47]
EEA. European Exchange of Monitoring Information and State of the Air Quality in 2005. ETC/ACC Technical Paper 2007/1; EEA: Copenhagen, Denmark, 2007.
[48]
Joly, M.; Peuch, V.-H. Objective classification of air quality monitoring sites over Europe. Atmos. Environ 2012, 47, 111–123.
[49]
Dunlea, E.J.; Herndon, S.C.; Nelson, D.D.; Volkamer, R.M.; San Martini, F.; Sheehy, P.M.; Zahniser, M.S.; Shorter, J.H.; Wormhoudt, J.C.; Lamb, B.K.; et al. Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment. Atmos. Chem. Phys 2007, 7, 2691–2704.
[50]
Steinbacher, M.; Zellweger, C.; Schwarzenbach, B.; Bugmann, S.; Buchmann, B.; Ordó?ez, C.; Prevot, A.S.H.; Hueglin, C. Nitrogen oxides measurements at rural sites in Switzerland: Bias of conventional measurement techniques. J. Geophys. Res. D: Atmos 2007, 112, D11307.
[51]
Villena, G.; Bejan, I.; Kurtenbach, R.; Wiesen, P.; Kleffmann, J. Interferences of commercial NO2 instruments in the urban atmosphere and in a smog chamber. Atmos. Meas. Tech. Discuss 2011, 4, 4269–4293.
[52]
Schaap, M.; Otjes, R.P.; Weijers, E.P. Illustrating the benefit of using hourly monitoring data on secondary inorganic aerosol and its precursors for model evaluation. Atmos. Chem. Phys 2011, 11, 11041–11053.
[53]
Stevenson, D.S.; Dentener, F.J.; Schultz, M.G.; Ellingsen, K.; van Noije, T.P.C.; Wild, O.; Zeng, G.; Amann, M.; Atherton, C.S.; Bell, N.; et al. Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J. Geophys. Res. D: Atmos 2006, 111, D08301.
[54]
Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ 2009, 43, 51–63.
[55]
Stavrakou, T.; Müller, J.-F.; Boersma, K.F.; De Smedt, I.; van der A, R.J. Assessing the distribution and growth rates of NOx emission sources by inverting a 10-year record of NO2 satellite columns. Geophys. Res. Lett 2008, 35, L10801.
[56]
Konovalov, I.B.; Beekmann, M.; Richter, A.; Burrows, J.P. Inverse modelling of the spatial distribution of NOx emissions on a continental scale using satellite data. Atmos. Chem. Phys 2006, 6, 1747–1770.
[57]
Boersma, K.F.; Jacob, D.J.; Eskes, H.J.; Pinder, R.W.; Wang, J.; van der A, R.J. Intercomparison of SCIAMACHY and OMI Tropospheric NO2 Columns: Observing the diurnal evolution of chemistry and emissions from space. J. Geophys. Res. D: Atmos 2008, 113, D16S26.
[58]
Huijnen, V.; Eskes, H.J.; Poupkou, A.; Elbern, H.; Boersma, K.F.; Foret, G.; Sofiev, M.; Valdebenito, A.; Flemming, J.; Stein, O.; et al. Comparison of OMI-NO2 tropospheric columns with an ensemble of global and European Regional Air Quality Models. Atmos. Chem. Phys 2010, 10, 3273–3296.
[59]
Boersma, K.F.; Jacob, D.J.; Bucsela, E.J.; Perring, A.E.; Dirksen, R.; van der A, R.J.; Yantosca, R.M.; Park, R.J.; Wenig, M.O.; Bertram, T.H.; et al. Validation of OMI Tropospheric NO2 observations during INTEX-B and application to constrain NOx emissions over the Eastern United States and Mexico. Atmos. Environ 2008, 42, 4480–4497.
[60]
Yienger, J.J.; Levy, H., II. Empirical model of global soil-biogenic NOx emissions. J. Geophys. Res 1995, 100, 11447–11464.
[61]
Hudman, R.C.; Moore, N.E.; Mebust, A.K.; Martin, R.V.; Russell, A.R.; Valin, L.C.; Cohen, R.C. Steps towards a mechanistic model of global soil Nitric Oxide emissions: Implementation and space based-constraints. Atmos. Chem. Phys 2012, 12, 7779–7795.