Estimation of actual evapotranspiration (ET) for the Middle Rio Grande valley in central New Mexico via the METRIC surface energy balance model using MODIS and Landsat imagery is described. MODIS images are a useful resource for estimating ET at large scales when high spatial resolution is not required. One advantage of MODIS satellites is that images having a view angle < ~15° are potentially available about every four to five days. The main challenge of applying METRIC using MODIS is the selection of the two calibration conditions due to the low spatial resolution of MODIS. A calibration procedure specific to MODIS is described that utilizes the higher vegetation index areas of the image along with a consistently low ET location to develop the estimation function for sensible heat flux. This paper compares ET images for the Rio Grande region as produced by both MODIS and by Landsat. Application of METRIC energy balance processes along the Middle Rio Grande using MODIS imagery indicates that one can successfully produce monthly and annual ET estimates that are similar in value to those obtained using Landsat imagery if a cross-calibration scheme is considered. However, spatial fidelity is degraded.
References
[1]
Kustas, W.P.; Norman, J.M. Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrol. Sci. J 1996, 41, 495–515.
[2]
Bastiaanssen, W.G.M. Remote Sensing in Water Resources Management: The State of the Art; IWMI: Sri Lanka, 1998.
[3]
Courault, D.; Seguin, B.; Olioso, A. Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical approaches. Irrig. Drain. Syst 2005, 19, 223–249.
[4]
Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys 2008, 29, 421–469.
[5]
Anderson, M.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ 2012, 122, 50–65.
[6]
Crow, W.T.; Kustas, W.P.; Prueger, J.H. Monitoring root-zone soil moisture through the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model. Remote Sens. Environ 2008, 112, 1268–1281.
[7]
Nagler, P.; Glenn, E.; Nguyen, U.; Scott, R.; Doody, T. Estimating riparian and agricultural actual evapotranspiration by reference evapotranspiration and MODIS enhanced vegetation index. Remote Sens 2013, 5, 3849–3871.
[8]
Tang, R.; Zhao-Liang, L.; Tang, B. An application of the Ts-VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions. Remote Sens. Environ 2010, 114, 540–551.
[9]
Yang, Y.; Shang, S.; Jiang, L. Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China. Agric. For. Meteorol 2012, 164, 112–122.
[10]
Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J. Hydrol. 1998, 212–213, 198–212.
[11]
Bastiaanssen, W.G.M.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.; Roerink, G.J.; van der Wal, T. The Surface Energy Balance Algorithm for Land (SEBAL): Part 2 validation. J. Hydrol 1998, 212–213, 213–229.
[12]
Bastiaanssen, W.G.M. Regionalization of Surface Flux Densities and Moisture Indicators in Composite Terrain: A Remote Sensing Approach under Clear Skies in Mediterranean ClimatesPh.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands. 1995.
[13]
Ruhoff, A.; Paz, A.; Collischonn, W.; Aragao, L.; Rocha, H.; Malhi, Y. A MODIS-based energy balance to estimate evapotranspiration for clear-sky days in Brazilian tropical savannas. Remote Sens 2012, 4, 703–725.
[14]
Jia, L.; Xi, G.; Liu, S.; Huang, C.; Yan, Y.; Liu, G. Regional estimation of daily to annual regional evapotranspiration with MODIS in the Yellow River delta wetland. Hydrol. Earth Syst. Sci 2009, 13, 1775–1787.
[15]
Mu, Q.; Zhao, S.; Running, S. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ 2011, 155, 1781–1800.
[16]
Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. ASCE J. Irrig. Drain. Eng 2007, 33, 380–394.
[17]
Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R.; Kramber, W.; Lorite, I.; Robison, C.W. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Applications. ASCE J. Irrig. Drain. Eng 2007, 133, 395–406.
[18]
Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R. A Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning. J. Irrig. Drain. Syst 2005, 19, 251–268.
[19]
Tasumi, M.; Trezza, R.; Allen, R.G.; Wright, J.L. Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid U.S. J. Irrig. Drain. Syst 2005, 19, 355–376.
[20]
Tasumi, M.; Allen, R.G.; Trezza, R.; Wright, J.L. Satellite-based energy balance to assess within-population variance of crop coefficient curves. ASCE J. Irrig. Drain. Eng 2005, 131, 94–109.
[21]
Allen, R.G.; Tasumi, M.; Trezza, R. Benefits from Tying Satellite-Based Energy Balance to Reference Evapotranspiration. In Earth Observation for Vegetation Monitoring and Water Management: Naples, Italy, 10–11 November 2005; D’Urso, G., Jochum, A., Moreno, J., Eds.; American Institute of Physics: College Park, MD, USA, 2005; pp. 127–137.
[22]
Tasumi, M.; Trezza, R.; Allen, R.G. METRIC Manual for MODIS Image Processing Version 1.0 (April, 2006); University of Idaho R&E Center: Kimberly, IA, USA, 2006; p. 67.
[23]
Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. Irrigation and Drainage Paper 56;; United Nations FAO: Rome, Italy, 1998; p. 300.
[24]
ASCE-EWRI. The ASCE Standardized Reference Evapotranspiration Equation. ASCE-EWRI Standardization of Reference Evapotranspiration Task Committee Report;; ASCE: Reston, VA, USA, 2005; p. 216.
[25]
Tasumi, M.; Allen, R.; Trezza, R. At-surface albedo from Landsat and MODIS satellites for use in energy balance studies of evapotranspiration. J. Hydrol. Eng 2008, 13, 51–63.
[26]
Starks, P.J.; Norman, J.M.; Blad, B.L.; Walter-Shea, E.A.; Walthall, C.L. Estimation of shortwave hemispherical reflectance (albedo) from bidirectionally reflected radiance data. Remote Sens. Environ 1991, 38, 123–134.
[27]
MODIS UCSB Emissivity Library. 2012. Available online: http://www.icess.ucsb.edu/modis/EMIS/html/em.html (accessed on 15 March 2012).
[28]
Myneni, R.; Knyazikhin, Y; Zhang, Y.; Tian, Y.; Wang, Y.; Privette, J.; Morisette, J.; Running, S.; Nemani, R. MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorved by Vegetation (FPAR) Product (MOD15) Algorithm Theoretical Basis Document, Version 4.0; 1999. Available online: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf (accessed on 1 April 2008).
[29]
Allen, R.G; Burnett, B.; Kramber, W.; Huntington, J.; Kjasersgaard, J.; Kilic, A.; Kelly, C.; Trezza, R. Automated calibration of the METRIC-Landsat evapotranspiration process. J. Am. Water Resour. Assoc 2013, 49, 563–576.
[30]
Allen, R.G. Skin layer evaporation to account for small precipitation events—An enhancement to the FAO-56 evaporation model. Agric. Water Manage 2011, 99, 8–18.
[31]
NASA Earth Observing System Data and Information System (EOSDIS); 2012. http://reverb.echo.nasa.gov/reverb (accessed on 15 January 2013).
[32]
Hong, S.-H.; Hendrickx, J.M.H.; Borchers, B. Effect of scaling transfer between evapotranspiration maps derived from LandSat 7 and MODIS images. Proc. SPIE 2005, 5811, 147–158.
[33]
Compaoré, H.; Hendrickx, J.M.H.; Hong, S.-H.; Friesen, J.; van de Giesen, N.C.; Rodgers, C.; Szarzynski, J.; Vlek, P.L.G. Evaporation mapping at two scales using optical imagery in the White Volta Basin, Upper East Ghana. Phys. Chem. Earth, Parts A/B/C 2008, 33, 127–140.
[34]
US Bureau of Reclamation. ET Toolbox, Evapotranspiration Toolbox for the Middle Rio Grande. A Water Resources Decision Tool, 2008. Available online: http://www.usbr.gov/pmts/rivers/awards/ettoolbox.pdf (accessed on 15 January 2013).
[35]
Allen, R.G.; Tasumi, M.; Robison, C.; Trezza, R.; Garcia, M. Exploration of ET Coefficients Derived Using MODIS Satellite-Based METRIC ETrF vs. Awards/ET-Toolbox Based ET Coefficients within the Middle Rio Grande Valley. University of Idaho Report;; University of Idaho: Kimberly, IA, USA, 2008; p. 37.
[36]
Hendrickx, J.; Allen, R.; Brower, A.; Byrd, A.; Hong, S.; Ogden, F.; Pradhan, N.; Robison, C.; Toll, D.; Trezza, R.; Umstot, T; Wilson, J. Benchmarking optical/thermal satellite imagery for estimation of evapotranspiration and soil moisture in decision support tools. J. Am. Water Resour. Assoc, 2013. submitted.
[37]
Kamble, B.; Kilic, A.; Hubbard, K. Estimating crop coefficients using remote sensing-based vegetation index. Remote Sens 2013, 5, 1588–1602.