Efficient monitoring of Canopy Water Content (CWC) is a central feature in vegetation studies. The potential of hyperspectral high spatial resolution CHRIS/PROBA satellite data for the retrieval of CWC was here investigated using empirical and physical based approaches. Special attention was paid to the spectral band selection, inversion technique and training process. Performances were evaluated with ground measurements from the SEN3EXP field campaign over a range of crops. Results showed that the optimal band selection includes four spectral bands: one centered about 970 nm absorption feature which is sensible to C w, and three bands in green, red and near infrared to estimate LAI and compensate from leaf- and canopy-level effects. A simple neural network with a single hidden layer of five tangent sigmoid transfer functions trained over PROSAIL radiative transfer simulations showed benefits in the retrieval performances compared with a look up table inversion approach (root mean square error of 0.16 kg/m 2 vs. 0.22 kg/m 2). The neural network inversion approach showed a good agreement and performances similar to an empirical up-scaling approach based on a multivariate iteratively re-weighted least squares algorithm, demonstrating the applicability of radiative transfer model inversion methods to CHRIS/PROBA for high spatial resolution monitoring of CWC.
References
[1]
Tucker, C.J. Remote sensing of leaf water content in the near infrared. Remote Sens. Environ 1980, 10, 23–32.
[2]
Chuvieco, E.; Ria?o, D.; Aguado, I.; Cocero, D. Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: Applications in fire danger assessment. Int. J. Remote Sens 2002, 23, 2145–2162.
[3]
Yebra, M.; Dennison, P.E.; Chuvieco, E.; Ria?o, D.; Zylstra, P.; Hunt, E.R., Jr; Danson, F.M.; Qi, Y.; Jurdao, S. A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sens. Environ 2013, 136, 455–468.
[4]
Yilmaz, M.T.; Hunt, E.R., Jr; Jackson, T.J. Remote sensing of vegetation water content from equivalent water thickness using satellite imagery. Remote Sens. Environ 2008, 112, 2514–2522.
[5]
Yilmaz, M.T.; Hunt, E.R., Jr; Goins, L.D.; Ustin, S.L.; Vanderbilt, V.C.; Jackson, T.J. Vegetation water content during SMEX04 from ground data and Landsat 5 Thematic Mapper imagery. Remote Sens. Environ 2008, 112, 350–362.
[6]
Curran, P.J. Remote sensing of foliar chemistry. Remote Sens. Environ 1989, 30, 71–278.
[7]
Clevers, J.G.P.W.; Kooistra, L.; Schaepman, M.E. Estimating canopy water content using hyperspectral remote sensing data. Int. J. Appl. Earth Obs. Geoinf 2010, 12, 119–125.
[8]
Clevers, J.G.P.W.; Kooistra, L.; Schaepman, M.E. Using spectral information from the NIR water absorption features for the retrieval of canopy water content. Int. J. Appl. Earth Obs. Geoinf 2008, 10, 388–397.
[9]
Pe?uelas, J.; Filella, I.; Biel, C.; Serrano, L.; Save, R. The reflectance at the 950–970 nm region as an indicator of plant water status. Int. J. Remote Sens 1993, 14, 1887–1905.
[10]
Roberts, D.A.; Green, R.O.; Adams, J.B. Temporal and Spatial patterns in vegetation and atmospheric properties from AVIRIS. Remote Sens. Environ 1997, 62, 223–240.
[11]
Green, R.O.; Conel, J.E.; Roberts, D.A. Estimation of aerosol optical depth, pressure elevation, water vapor, and calculation of apparent surface reflectance from radiance measured by the airborne visible/infrared imaging spectrometer (AVIRIS) using a radiative transfer code. Proc. SPIE 1993, doi:10.1117/12.157054.
[12]
Cheng, Y.-B.; Ustin, S.L.; Ria?o, D.; Vanderbilt, V.C. Water content estimation from hyperspectral images and MODIS indexes in Southeastern Arizona. Remote Sens. Environ 2008, 112, 363–374.
[13]
Stagakis, S.; Markos, N.; Sykioti, O.; Kyparissis, A. Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations. Remote Sens. Environ 2010, 114, 977–994.
[14]
Sykioti, O.; Paronis, D.; Stagakis, S.; Kyparissis, A. Band depth analysis of CHRIS/PROBA data for the study of a Mediterranean natural ecosystem. Correlations with leaf optical properties and ecophysiological parameters. Remote Sens. Environ 2011, 115, 752–766.
[15]
Ceccato, P.; Flasse, S.; Tarantola, S.; Jacquemoud, S.; Grégoire, J.M. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens. Environ. 2001, 77.
[16]
Combal, B.; Baret, F.; Weiss, M. Improving canopy variables estimation from remote sensing data by exploiting ancillary information. Case study on sugar beet canopies. Agronomie 2002, 22, 205–215.
[17]
Anderson, M.C.; Neale, C.M.U.; Li, F.; Norma, J.M.; Kustas, W.P.; Jayanthi, H.; Chavez, J. Upscaling ground observations of vegetation water content, canopy height, and leaf area index during SMEX02 using aircraft and Landsat imagery. Remote Sens. Environ 2004, 92, 447–464.
[18]
Zarco-Tejada, P.J.; Rueda, C.A.; Ustin, S.L. Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sens. Environ 2003, 85, 109–124.
[19]
Fernandes, R. Valse2 Algorithm Theorical Basis Document (ATBD) for Canopy Water Content: Normalized Difference Water Index. Report for ESA contract AO/1–6958/11/NL/BJ;; CCRS: Ottawa, ON, Canada, 2012; p. 50.
[20]
Ceccato, P.; Gobron, N.; Flasse, S.; Pinty, B.; Tarantola, S. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1 Theoretical approach. Remote Sens. Environ 2002, 82, 188–197.
[21]
Colombo, R.; Meroni, M.; Marchesi, A.; Busetto, L.; Rossini, M.; Giardino, C.; Panigada, C. Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modeling. Remote Sens. Environ 2008, 112, 1820–1834.
[22]
Yebra, M.; Chuvieco, M.; Ria?o, D. Estimation of live fuel moisture content from MODIS images for fire risk assessment. Agric. For. Meteorol 2008, 148, 523–536.
[23]
Dorigo, W.; Richter, R.; Baret, F.; Bamler, R.; Wagner, W. Enhanced automated canopy characterization from hyperspectral data by a novel two step radiative transfer model inversion approach. Remote Sens 2009, 1, 1139–1170.
[24]
Rubio, M.A.; Ria?o, D.; Cheng, Y.B.; Ustin, S.L. Estimation of Canopy Water Content from MODIS Using Artificial Neural Networks Trained with Radiative Transfer Models. Proceedings of 6th Annual Meeting of the European Meteorological Society & 6th European Conference on Applied Climatology, Ljubljana, Slovenia, 4–8 September 2006.
[25]
Trombetti, M.; Riano, D.; Rubio, M.A.; Cheng, Y.B.; Ustin, S.L. Multi-temporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA. Remote Sens. Environ 2008, 112, 203–215.
[26]
Baret, F.; Buis, S. Estimating Canopy Characteristics from Remote Sensing Observations. Review of Methods and Associated Problems. In Advances in Land Remote Sensing: System, Modeling, Inversion and Application; Liang, S., Ed.; Springer: Heidelberg, Germany, 2007; pp. 171–200.
[27]
Mas, J.F.; Flores, J.J. The application of artificial neural networks to the analysis of remotely sensed data. Int. J. Remote Sens 2008, 29, 617–663.
[28]
Verger, A.; Baret, F.; Camacho de Coca, F. Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations. Remote Sens. Environ 2011, 115, 415–426.
[29]
Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; Fran?ois, C.; Ustin, S.L. PROSPECT + SAIL models: A review of use for vegetation characterization. Remote Sens. Environ 2009, 113, S56–S66.
[30]
Brockmann, C. Sentinel-3 Experimental Campaign (SEN3EXP) Final Report. ESA Contract 22661/09/I-LG; ESA Publications Division: Noordwijk, The Netherlands, 2011; p. 294.
[31]
Martinez, B.; Camacho, F.; García-Haro, F.J. Estimación de parámetros biofísicos de vegetación utilizando el método de la cámara hemisférica. Revista Espa?ola de Teledetección 2006, 26, 5–17.
[32]
CAN-EYE Website. Available online: http://www4.paca.inra.fr/can-eye (accessed on 31 July 2013).
[33]
Camacho, F.; Giner, M.; Delegido, J.; Vergara, C. Ground Measurement Acquisition Report: Vegetation Parameters; Barrax site, 20–24, June 2009. SEN3EXP Internal Report; SEN3EXP: Valencia, Spain, 2009; p. 22.
[34]
Alonso, L.; Moreno, J. Advances and Limitations in A Parametric Geometric Correction of Chris/Proba Data. Proceedings of Third CHRIS/Proba Workshop, ESRIN, Frascati, Italy, 21–23 March 2005; pp. 7–14.
[35]
Moreno, J.F.; Melia, J. An optimum interpolation method applied to the resampling of NOAA AVHRR data. IEEE Trans. Geosci. Remote Sens 1994, 32, 131–151.
[36]
BEAM Website. Available online: http://www.brockmann-consult.de/cms/web/beam (accessed on 31 July 2013).
[37]
Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ 1990, 34, 75–91.
[38]
Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens. Environ 1984, 16, 125–141.
[39]
Verhoef, W. Earth observation modeling based on layer scattering matrices. Remote Sens. Environ 1985, 17, 165–178.
[40]
Kuusk, A. The hot spot effect of a uniform vegetative cover. Remote Sens. Environ 1985, 3, 645–658.
[41]
Liu, W.; Baret, F.; Gu, X.F.; Zhang, B.; Tong, Q.; Zhang, L. Evaluation of methods for soil surface moisture estimation from reflectance data. Int. J. Remote Sens 2003, 24, 2069–2083.
[42]
Richter, K.; Hank, T.B.; Vuolo, F.; Mauser, W.; D’Urso, G. Optimal exploitation of the Sentinel-2 spectral capabilities for crop leaf area index mapping. Remote Sens 2012, 4, 561–582.
[43]
Bacour, C.; Baret, F.; Béal, D.; Weiss, M.; Pavageau, K. Neural network estimation of LAI, fAPAR, fCover and LAIxCab, from top of canopy MERIS reflectance data: Principles and validation. Remote Sens. Environ 2006, 105, 313–325.
[44]
Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Weiss, M.; Samain, O.; Roujean, J.L.; et al. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION. Part 1: Principles of the algorithm. Remote Sens. Environ 2007, 110, 275–286.
[45]
Vohland, M.; Mader, S. Numerical Minimisation and Artificial Neural Networks: Two Different Approaches to Retrieve Parameters from a Canopy Reflectance Model. Proceedings of 5th EARSeL Workshop on Imaging Spectroscopy, Bruges, Belgium, 23–25 April 2007.
[46]
Demuth, H.; Beale, M. Neural Network Toolbox User’s Guide; MathWorks: Natick, MA, USA, 1998.
[47]
Atkinson, P.M.; Tatnall, A.R.L. Neural network in remote sensing. Int. J. Remote Sens 1997, 18, 699–709.
[48]
Morisette, J.; Baret, F.; Privette, J.L.; Myneni, R.B.; Nickeson, J.; Garrigues, S.; Shabanov, N.; Weiss, M.; Fernandes, R.; Leblanc, S.; et al. Validation of global moderate resolution LAI Products: A framework proposed within the CEOS Land Product Validation subgroup. IEEE Trans. Geosci. Remote Sens 2006, 44, 1804–1817.
[49]
Martínez, B.; García-Haro, F.J.; Camacho-de Coca, F. Derivation of high-resolution leaf area index maps in support of validation activities: Application to the cropland Barrax site. Agric. For. Meteorol 2009, 149, 130–145.
[50]
Ronchetti, E.; Field, C.; Blanchard, W. Robust linear model selection by cross-validation. J. Am. Stat. Assoc 1997, 92, 1017–1023.
[51]
Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement of Retrogradation of Natural Vegetation; NASA/GSFC: Greenbelt, MD, USA, 1974; p. 371.
[52]
Chuvieco, E.; Cocero, D.; Ria?o, D.; Martin, P.; Martínez-Vega, J.; de la Riva, J.; Pérez, F. Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens. Environ 2004, 92, 322–331.
[53]
Cheng, T.; Ria?o, D.; Koltunov, A.; Whiting, M.L.; Ustin, S.L.; Rodriguez, J. Detection of diurnal variation in orchard canopy water content using MODIS/ASTER airborne simulator (MASTER) data. Remote Sens. Environ 2013, 132, 1–12.
[54]
Baghzouz, M.; Devitt, D.A.; Fenstermaker, L.F.; Young, M.H. Monitoring vegetation phenological cycles in two different semi-arid environmental settings using a ground-based NDVI system: A potential approach to improve satellite data interpretation. Remote Sens 2010, 2, 990–1013.
[55]
Sobrino, J.A.; Franch, B.; Mattar, C.; Jiménez-Mu?oz, J.C.; Corbari, C. A method to estimate soil moisture from Airborne Hyperspectral Scanner (AHS) and ASTER data: Application to SEN2FLEX and SEN3EXP campaigns. Remote Sens. Environ 2012, 117, 415–428.
[56]
Atzberger, C.; Richter, K. Spatially constrained inversion of radiative transfer models for improved LAI mapping from future Sentinel-2 imagery. Remote Sens. Environ 2012, 120, 208–218.