This study evaluates the performances of three global satellite datasets (Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS) and Satellite pour l’ observation de la Terre (SPOT) of the Mongolian Plateau, where in situ observation is insufficient to assess vegetation dynamics on terrestrial systems. We give a comprehensive assessment of the historical changes in vegetation dynamics by using comparative and correlation methods on the three archives using two indices: the growing season’s Normalized Difference Vegetation Index (NDVI) and the Start of the Season Index (SOS). The main findings are: (1) MODIS and SPOT have generally better comparability and consistency in the spatial-temporal trends of NDVI and SOS than AVHRR in this area; (2) all the three archives exhibit better consistency in Inner Mongolia than in Mongolia; (3) integration data analysis of AVHRR (1982–1997) and SPOT (1998–2012) shows that the dynamics of vegetation growth has three distinct phases: enhanced before 1994; a flatter/slightly decreasing trend before 2001; and, then, a rapid recovery between 2001 and 2012 with remarkable spatial heterogeneity, with Inner Mongolia experiencing a significant greening in vegetation NDVI compared with no obvious changes in Mongolia; (4) the temporal average SOS showed no significant “earlier spring” onset during the past 31 years, on the middle and northern Mongolian Plateau.
References
[1]
Cao, M.; Woodward, F.I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 1998, 393, 249–252.
[2]
Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using modis. Remote Sens. Environ 2003, 84, 471–475.
[3]
Zeng, H.; Jia, G.; Forbes, B. Shifts in arctic phenology in response to climate and anthropogenic factors as detected from multiple satellite time series. Environ. Res. Lett. 2013, 8, doi:10.1088/1748-9326/8/3/035036.
[4]
Heumann, B.W.; Seaquist, J.; Eklundh, L.; J?nsson, P. Avhrr derived phenological change in the sahel and soudan, africa, 1982–2005. Remote Sens. Environ 2007, 108, 385–392.
[5]
Wang, Q.; Tenhunen, J.D. Vegetation mapping with multitemporal ndvi in north eastern china transect (nect). Int. J. Appl. Earth Obs. Geoinf 2004, 6, 17–31.
[6]
Eastman, J.; Sangermano, F.; Machado, E.; Rogan, J.; Anyamba, A. Global trends in seasonality of normalized difference vegetation index (NDVI), 1982–2011. Remote Sens 2013, 5, 4799–4818.
[7]
Luo, X.; Chen, X.; Xu, L.; Myneni, R.; Zhu, Z. Assessing performance of ndvi and ndvi3g in monitoring leafunfolding dates of the deciduous broadleaf forest in northern china. Remote Sens 2013, 5, 845–861.
[8]
Beck, P.S.; Atzberger, C.; H?gda, K.A.; Johansen, B.; Skidmore, A.K. Improved monitoring of vegetation dynamics at very high latitudes: A new method using modis ndvi. Remote Sens. Environ 2006, 100, 321–334.
[9]
Zhang, J.X.; Liu, Z.G.; Sun, X.X. Changing landscape in the three gorges reservoir area of yangtze river from 1977 to 2005: Land use/land cover, vegetation cover changes estimated using multi-source satellite data. Int. J. Appl. Earth Obs. Geoinf 2009, 11, 403–412.
[10]
Delbart, N.; Le Toan, T.; Kergoat, L.; Fedotova, V. Remote sensing of spring phenology in boreal regions: A free of snow-effect method using noaa-avhrr and spot-vgt data (1982–2004). Remote Sens. Environ 2006, 101, 52–62.
[11]
Grégoire, J.-M.; Tansey, K.; Silva, J. The gba2000 initiative: Developing a global burnt area database from spot-vegetation imagery. Int. J. Remote Sens 2003, 24, 1369–1376.
[12]
Amri, R.; Zribi, M.; Lili-Chabaane, Z.; Duchemin, B.; Gruhier, C.; Chehbouni, A. Analysis of vegetation behavior in a north african semi-arid region, using SPOT-vegetation NDVI data. Remote Sens 2011, 3, 2568–2590.
[13]
Zhang, G.; Zhang, Y.; Dong, J.; Xiao, X. Green-up dates in the tibetan plateau have continuously advanced from 1982 to 2011. Proc. Natl. Acad. Sci. USA 2013, 110, 4309–4314.
[14]
Yin, H.; Udelhoven, T.; Fensholt, R.; Pflugmacher, D.; Hostert, P. How normalized difference vegetation index (ndvi) trendsfrom advanced very high resolution radiometer (AVHRR) and système probatoire d’observation de la terre vegetation (spot vgt) time series differ in agricultural areas: An inner mongolian case study. Remote Sens 2012, 4, 3364–3389.
[15]
Fensholt, R.; Rasmussen, K.; Nielsen, T.T.; Mbow, C. Evaluation of earth observation based long term vegetation trends—Intercomparing ndvi time series trend analysis consistency of sahel from avhrr gimms, terra modis and spot vgt data. Remote Sens. Environ 2009, 113, 1886–1898.
[16]
Badeck, F.W.; Bondeau, A.; B?ttcher, K.; Doktor, D.; Lucht, W.; Schaber, J.; Sitch, S. Responses of spring phenology to climate change. New Phytol 2004, 162, 295–309.
[17]
Linderholm, H.W. Growing season changes in the last century. Agric. Forest Meteorol 2006, 137, 1–14.
[18]
Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 2006, 637–669.
[19]
Hu, Y.; Ban, Y.; Zhang, Q.; Zhang, X.; Liu, J.; Zhuang, D. Spatial—Temporal Pattern of Gimms NDVI and Its Dynamics in Mongolian Plateau. Proceedings of International Workshop on Earth Observation and Remote Sensing Applications, 2008, EORSA 2008, Beijing, China; 2008; pp. 1–6.
[20]
Schwartz, M.D.; Hanes, J.M. Intercomparing multiple measures of the onset of spring in eastern north america. Int. J. Climatol 2010, 30, 1614–1626.
[21]
Altangerel, B.; Sato, T.; Ishikawa, M.; Jamba, T. Performance of dynamic downscaling for extreme weather event in eastern mongolia: Case study of severe windstorm on 26 may 2008. SOLA 2011, 7, 117–120.
[22]
Marin, A. Riders under storms: Contributions of nomadic herders’ observations to analysing climate change in mongolia. Glob. Environ. Change 2010, 20, 162–176.
[23]
Sneath, D. State policy and pasture degradation in inner asia. Science 1998, 281, 1147–1148.
[24]
Zhao, B.R.; Liu, C.; Liu, A.J.; Wang, Z.G. Estimate the yield of grassland using modis-ndvi-a case study of the grassland in xilinguole in inner mongolia. Pratacul Sci 2004, 21, 12.
[25]
Lee, R.; Yu, F.; Price, K.; Ellis, J.; Shi, P. Evaluating vegetation phenological patterns in inner mongolia using NDVI time-series analysis. Int. J. Remote Sens 2002, 23, 2505–2512.
[26]
Xin, C.; Zhihui, G.; Jin, C.; Jin, L.; Peijun, S. Analysis of human-induced steppe degradation based on remote sensing in Xilin Gole, Inner Mongolia, China. J. Plant Ecol 2005, 30, 268–277.
[27]
Piao, S.; Mohammat, A.; Fang, J.; Cai, Q.; Feng, J. Ndvi-based increase in growth of temperate grasslands and its responses to climate changes in china. Glob. Environ. Change 2006, 16, 340–348.
[28]
Jiang, N.; Zhu, W.; Zheng, Z.; Chen, G.; Fan, D. A comparative analysis between gimss ndvig and ndvi3g for monitoring vegetation activity change in the northern hemisphere during 1982–2008. Remote Sens 2013, 5, 4031–4044.
[29]
Hirano, A.; Batbileg, B. Identifying trends in the distribution of vegetation in mongolia in the decade after its transition to a market economy. Japan Agric. Res. Q 2013, 47, 203–208.
[30]
Mu, S.; Yang, H.; Li, J.; Chen, Y.; Gang, C.; Zhou, W.; Ju, W. Spatio-temporal dynamics of vegetation coverage and its relationship with climate factors in inner mongolia, china. J. Geogr. Sci 2013, 23, 231–246.
[31]
Kang, M.; Dai, C.; Ji, W.; Jiang, Y.; Yuan, Z.; Chen, H.Y. Biomass and its allocation in relation to temperature, precipitation, and soil nutrients in Inner Mongolia grasslands, China. PLoS One 2013, 8, doi:10.1371/journal.pone.0069561.
[32]
Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An extended avhrr 8-km NDVI dataset compatible with modis and spot vegetation NDVI data. Int. J. Remote Sens 2005, 26, 4485–4498.
[33]
Beck, H.E.; McVicar, T.R.; van Dijk, A.I.; Schellekens, J.; de Jeu, R.A.; Bruijnzeel, L.A. Global evaluation of four Avhrr–NDVI data sets: Intercomparison and assessment against landsat imagery. Remote Sens. Environ 2011, 115, 2547–2563.
[34]
Wang, X.; Piao, S.; Ciais, P.; Li, J.; Friedlingstein, P.; Koven, C.; Chen, A. Spring temperature change and its implication in the change of vegetation growth in north america from 1982 to 2006. Proc. Natl Acad. Sci. USA 2011, 108, 1240–1245.
[35]
Holben, B.; Kimes, D.; Fraser, R.S. Directional reflectance response in Avhrr red and near-IR bands for three cover types and varying atmospheric conditions. Remote Sens. Environ 1986, 19, 213–236.
[36]
Cihlar, J.; Tcherednichenko, I.; Latifovic, R.; Li, Z.; Chen, J. Impact of variable atmospheric water vapor content on avhrr data corrections over land. IEEE Trans. Geosci. Remote Sens 2001, 39, 173–180.
[37]
Holben, B.N. Characteristics of maximum-value composite images from temporal avhrr data. Int. J. Remote Sens 1986, 7, 1417–1434.
[38]
Gobron, N.; Pinty, B.; Verstraete, M.M.; Widlowski, J.-L. Advanced vegetation indices optimized for up-coming sensors: Design, performance, and applications. IEEE Trans. Geosci. Remote Sens 2000, 38, 2489–2505.
[39]
Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the modis vegetation indices. Remote Sens. Environ 2002, 83, 195–213.
[40]
Vermote, E.F.; El Saleous, N.Z.; Justice, C.O. Atmospheric correction of modis data in the visible to middle infrared: First results. Remote Sens. Environ 2002, 83, 97–111.
[41]
Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P. First operational brdf, albedo nadir reflectance products from modis. Remote Sens. Environ 2002, 83, 135–148.
[42]
Li, A.; Wu, J.; Huang, J. Distinguishing between human-induced and climate-driven vegetation changes: A critical application of restrend in inner mongolia. Landsc. Ecol 2012, 27, 969–982.
[43]
Chen, J.; J?nsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality ndvi time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ 2004, 91, 332–344.
[44]
Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem 1964, 36, 1627–1639.
[45]
De Beurs, K.M.; Henebry, G.M. Spatio-Temporal Statistical Methods for Modelling Land Surface Phenology. In Phenological Research; Springer: Blacksburg, VA, USA, 2010; pp. 177–208.
[46]
White, M.A.; Thornton, P.E.; Running, S.W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochem. Cy 1997, 11, 217–234.
[47]
White, M.A.; de Beurs, K.M.; Didan, K.; Inouye, D.W.; Richardson, A.D.; Jensen, O.P.; O'Keefe, J.; Zhang, G.; Nemani, R.R.; van Leeuwen, W.J.D.; et al. Intercomparison, interpretation, and assessment of spring phenology in north america estimated from remote sensing for 1982–2006. Glob. Change Biol 2009, 15, 2335–2359.
[48]
Vrieling, A.; de Beurs, K.M.; Brown, M.E. Variability of african farming systems from phenological analysis of ndvi time series. Clim. change 2011, 109, 455–477.
[49]
Zhou, L.; Tucker, C.J.; Kaufmann, R.K.; Slayback, D.; Shabanov, N.V.; Myneni, R.B. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res.-Atmos 2001, 106, 20069–20083.
[50]
Alcaraz-Segura, D.; Liras, E.; Tabik, S.; Paruelo, J.; Cabello, J. Evaluating the consistency of the 1982–1999 ndvi trends in the iberian peninsula across four time-series derived from the avhrr sensor: Ltdr, gimms, fasir, and pal-ii. Sensors 2010, 10, 1291–1314.
[51]
Baldi, G.; Nosetto, M.D.; Aragón, R.; Aversa, F.; Paruelo, J.M.; Jobbágy, E.G. Long-term satellite ndvi data sets: Evaluating their ability to detect ecosystem functional changes in south america. Sensors 2008, 8, 5397–5425.
[52]
Li, J.; Wang, Y.; Qu, Z.; Ma, L. Characteristics of temporal and spatial distribution of drought occurrence in inner mongolia autonomous region. Agric. Res. Arid Areas 2010, 5, 266–272.
[53]
Zhang, M. Drought Changes in Inner Mongolia in Last 60 Years; Inner Mongolia Normal University: Beijing, China, 2012.
[54]
Zhao, X.; Tan, K.; Zhao, S.; Fang, J. Changing climate affects vegetation growth in the arid region of the northwestern china. J. Arid Environ 2011, 75, 946–952.
[55]
Peng, S.; Piao, S.; Shen, Z.; Ciais, P.; Sun, Z.; Chen, S.; Bacour, C.; Peylin, P.; Chen, A. Precipitation amount, seasonality and frequency regulate carbon cycling of a semi-arid grassland ecosystem in Inner Mongolia, China: A modeling analysis. Agric. For. Meteorol. 2013, 178–179, 46–55.
[56]
Li, S.; Xie, Y.; Brown, D.G.; Bai, Y.; Hua, J.; Judd, K. Spatial variability of the adaptation of grassland vegetation to climatic change in Inner Mongolia of China. Appl. Geogr 2013, 43, 1–12.
[57]
Wu, Z.; Wu, J.; Liu, J.; He, B.; Lei, T.; Wang, Q. Increasing terrestrial vegetation activity of ecological restoration program in the Beijing–Tianjin sand source region of China. Ecol. Eng 2013, 52, 37–50.
[58]
Liu, J.; Wu, J.; Wu, Z.; Liu, M. Response of ndvi dynamics to precipitation in the beijing–tianjin sandstorm source region. Int. J. Remote Sens 2013, 34, 5331–5350.
[59]
Sneath, D. The End of Nomadism Society?: Society, State and The Environment in Inner Asia; Duke University Press: Cambridge, UK, 1999.
[60]
Sneath, D. The “age of the market” and the regime of debt: The role of credit in the transformation of pastoral mongolia1. Soc. Anthropol 2012, 20, 458–473.
[61]
Chuai, X.; Huang, X.; Wang, W.; Bao, G. NDVI, temperature and precipitation changes and their relationships with different vegetation types during 1998–2007 in Inner Mongolia, China. Int. J. Climatol 2012, 33, 1696–1706.
[62]
Jeong, S.-J.; Ho, C.-H.; Gim, H.-J.; Brown, M.E. Phenology shifts at start vs. End of growing season in temperate vegetation over the northern hemisphere for the period 1982–2008. Glob. Chang. Biol 2011, 17, 2385–2399.
[63]
Zeng, H.; Jia, G.; Epstein, H. Recent changes in phenology over the northern high latitudes detected from multi-satellite data. Environ. Res. Lett 2011, 6, 045508.