全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Deviation-Time-Space-Thermal (DTS-T) Method for Global Earth Observation System of Systems (GEOSS)-Based Earthquake Anomaly Recognition: Criterions and Quantify?Indices

DOI: 10.3390/rs5105143

Keywords: GEOSS (Global Earth Observation System of Systems), earthquake anomaly recognition, multi-parameters, thermal, DTS-T (Deviation-Time-Space-Thermal) method, temperature, surface latent heat flux, outgoing longwave radiation

Full-Text   Cite this paper   Add to My Lib

Abstract:

The particular process of LCA (Lithosphere-Coversphere-Atmosphere) coupling referring to local tectonic structures and coversphere conditions is very important for understanding seismic anomaly from GEOSS (Global Earth Observation System of Systems). The LCA coupling based multiple-parameters analysis should be the foundation for earthquake prewarning. Three improved criterions: deviation notable enough, time quasi-synchronism, and space geo-adjacency, plus their quantify indices are defined for earthquake anomaly recognition, and applied to thermal parameters as a DTS-T (Deviation-Time-Space-Thermal) method. A normalized reliability index is preliminarily defined considering three quantify indices for deviation-time-space criterions. As an example, the DTS-T method is applied to the Ms 7.1 Yushu earthquake of 14 April 2010 in China. Furthermore, combining with the previous analysis of six recent significant earthquakes in the world, the statistical results regarding effective parameters, the occurrence of anomaly before the main shocks and a reliability index for each earthquake are introduced. It shows that the DTS-T method is reasonable and can be applied for routine monitoring and prewarning in the tectonic seismicity region.

References

[1]  Tronin, A.A. Satellite remote sensing in seismology: A review. Remote Sens 2010, 2, 124–150.
[2]  Fidani, C.; Battiston, R.; Burger, W.J. A study of the correlation between earthquakes and NOAA satellite energetic particle bursts. Remote Sens 2010, 2, 2170–2184.
[3]  Qiang, Z.J.; Xu, X.D.; Dian, C.G. Thermal infrared anomaly precursor of impending earthquakes. Chin. Sci. Bull 1991, 36, 319–323.
[4]  Tronin, A.A. Satellite thermal survey—A new tool for the study of seismoactive regions. Int. J. Remote Sens 1996, 41, 1439–1455.
[5]  Saraf, A.K.; Choudhury, S. Satellite detects surface thermal anomalies associated with the Algerian earthquakes of May 2003. Int. J. Remote Sens 2004, 26, 2705–2713.
[6]  Tramutoli, V.; Cuomo, V.; Filizzola, B.; Pergola, N.; Pietrapertosa, C. Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: The case of Kocaeli (Izmit) Earthquake, August 17, 1999. Remote Sens. Environ 2005, 96, 409–426.
[7]  Blackett, M.; Wooster, M.J.; Malamud, B.D. Exploring land surface temperature earthquake precursors: A focus on the Gujarat (India) earthquake of 2001. Geophys. Res. Lett. 2011, 38, doi:10.1029/2011GL048282.
[8]  Ouzounov, D.; Liu, D.F.; Kang, C.L.; Cervone, G.; Kafatos, M.; Taylor, P. The outgoing long-wave radiation variability prior to the major earthquake by analyzing IR satellite data. Tectonophysics 2007, 421, 211–220.
[9]  Dey, S.; Singh, R.P. Surface latent heat flux as an earthquake precursor. Hazard. Earth Syst. Sci 2003, 3, 1–7.
[10]  Qin, K.; Guo, G.M.; Wu, L.X. Surface latent heat flux anomalies preceding inland earthquakes in China. Earthq. Sci 2009, 22, 555–562.
[11]  Qin, K.; Wu, L.X.; de Santis, A.; Wang, H. Surface latent heat flux anomalies before the MS 7.1 New Zealand earthquake 2010. Chin. Sci. Bull 2011, 56, 3273–3280.
[12]  Qin, K.; Wu, L.X.; de Santis, A.; Meng, J.; Ma, W.Y.; Cianchini, G. Quasi-synchronous multi-parameter anomalies associated with the 2010–2011 New Zealand earthquake sequence. Nat. Hazard. Earth Syst. Sci 2012, 12, 1059–1072.
[13]  Wu, L.X.; Liu, S.J. Remote Sensing Rock Mechanics and Earthquake Infrared Anomalies. In Advances in Geosciences & Remote Sensing; Gary, J., Ed.; InTech: Vukovar, Croatia, 2009; pp. 709–741.
[14]  Tadashi, T.; Takashi, M. Experiment and theoretical study of earthquake detection capability by means of microwave passive sensors on a satellite. IEEE Geosci. Remote Sens. Lett 2009, 6, 107–111.
[15]  Asteriadis, G.; Livieratos, E. Pre-seismic responses of underground water level and temperature concerning a 4.8 magnitude earthquake in Greece on October 20, 1988. Tectonophysics 1989, 170, 165–169.
[16]  Freund, F.T. Charge generation and propagation in igneous rocks. J. Geodyn 2002, 33, 543–570.
[17]  Pulinets, S.; Ozounov, D.; Karelin, A.V.; Boyarchuk, K.A.; Pokhmelnykh, L.A. The physical nature of thermal anomalies observed before strong earthquakes. Phys. Chem. Earth 2006, 31, 143–153.
[18]  Wu, L.X.; Cui, C.Y.; Geng, N.G.; Wang, J.Z. Remote sensing rock mechanics (RSRM) and associated experimental studies. Int. J. Rock Mech. Min. Sci 2000, 37, 879–888.
[19]  Wu, L.X.; Liu, S.J.; Wu, Y.H. Precursors for rock fracturing and failure-part I: IRR image abnormalities. Int. J. Rock Mech. Min 2006, 43, 473–482.
[20]  Wu, L.X.; Liu, S.J.; Wu, Y.H. Precursors for rock fracturing and failure-part II: IRR T-curve abnormalities. Int. J. Rock Mech. Min 2006, 43, 483–493.
[21]  Wu, L.X.; Qin, K.; Liu, S.J. GEOSS-based thermal parameters analysis for earthquake anomaly recognition. Proc. IEEE 2012, 100, 2891–2907.
[22]  Qin, K.; Wu, L.X.; de Santis, A.; Cianchini, G. Preliminary analysis of surface temperature anomalies preceding the two major 2012 Emilia (Italy) earthquakes. Ann. Geophys 2012, 55, 823–828.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133