Leaf Area Index (LAI) is an important input variable for forest ecosystem modeling as it is a factor in predicting productivity and biomass, two key aspects of forest health. Current in situ methods of determining LAI are sometimes destructive and generally very time consuming. Other LAI derivation methods, mainly satellite-based in nature, do not provide sufficient spatial resolution or the precision required by forest managers for tactical planning. This paper focuses on estimating LAI from: (i) height and density metrics derived from Light Detection and Ranging (LiDAR); (ii) spectral vegetation indices (SVIs), in particular the Normalized Difference Vegetation Index (NDVI); and (iii) a combination of these methods. For the Hearst Forest of Northern Ontario, in situ measurements of LAI were derived from digital hemispherical photographs (DHPs) while remote sensing variables were derived from low density LiDAR ( i.e., 1 m ?2) and high spatial resolution WorldView-2 data (2 m). Multiple Linear Regression (MLR) models were generated using these variables. Results from these analyses demonstrate: (i) moderate explanatory power ( i.e., R 2 = 0.53) for LiDAR height and density metrics that have proven to be related to canopy structure; (ii) no relationship when using SVIs; and (iii) no significant improvement of LiDAR models when combining them with SVI variables. The results suggest that LiDAR models in boreal forest environments provide satisfactory estimations of LAI, even with narrow ranges of LAI for model calibration. Models derived from low point density LiDAR in a mixedwood boreal environment seem to offer a reliable method of estimating LAI at high spatial resolution for decision makers in the forestry community. This method can be easily incorporated into simultaneous modeling efforts for forest inventory variables using LiDAR.
References
[1]
Brandt, J.P. The extent of the North American boreal zone. Environ. Rev 2009, 17, 101–161.
[2]
Forests Branch, Ontario Ministry of Natural Resources (OMNR). State of the Forest Report 2006; OMNR: Ottawa, ON, Canada, 2006.
[3]
Government of Ontario, Crown Forest Sustainability Act 1994. Volume Part 1; Law last amended, 1 June 2011.
[4]
Polis, G.A. Why are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos 1999, 86, 3–15.
[5]
Deblonde, G.; Penner, M.; Royer, A. Measuring leaf area index with the Li-Cor LAI-2000 in pine stands. Ecology 1994, 75, 1507–1511.
[6]
Leblanc, S.G.; Chen, J.M.; Fernandes, R.; Deering, D.W.; Conley, A. Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agric. For. Meteorol 2005, 129, 187–207.
[7]
Abuelgasim, A.A.; Fernandes, R.A.; Leblanc, S.G. Evaluation of national and global LAI products derived from optical remote sensing instruments over Canada. IEEE Trans. Geosci. Remote Sens 2006, 44, 1872–1884.
[8]
Leverenz, J.W.; Hinckley, T.M. Shoot structure, leaf area index and productivity of evergreen conifer stands. Tree Physiol 1990, 6, 135–149.
[9]
McWilliam, A.L.; Roberts, J.M.; Cabral, O.M.; Leitao, M.V.; Costa, A.C.; Maitelli, G.T.; Zamparoni, C.A. Leaf area index and above-ground biomass of terra firme rain forest and adjacent clearings in Amazonia. Funct. Ecol 1993, 7, 310–317.
[10]
Friedl, M.A.; Schimel, D.S.; Michaelsen, J.; Davis, F.W.; Walker, H. Estimating grassland biomass and leaf area index using ground and satellite data. Int. J. Remote Sens 1994, 15, 1401–1420.
[11]
Hashimoto, H.; Wang, W.; Milesi, C.; White, M.A.; Ganguly, S.; Gamo, M.; Hirata, R.; Myneni, R.B.; Nemani, R.R. Exploring simple algorithms for estimating gross primary production in forested areas from satellite data. Remote Sens 2012, 4, 303–326.
[12]
Verwijst, T.; Telenius, B. Biomass estimation procedures in short rotation forestry. For. Ecol. Manag 1999, 121, 137–146.
[13]
Ria?o, D.; Valladares, F.; Condés, S.; Chuvieco, E. Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests. Agric. For. Meteorol 2004, 124, 269–275.
[14]
Morsdorf, F.; K?tz, B.; Meier, E.; Itten, K.I.; Allg?wer, B. Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sens. Environ 2006, 104, 50–61.
[15]
Jensen, J.L.R.; Humes, K.S.; Vierling, L.A.; Hudak, A.T. Discrete return lidar-based prediction of leaf area index in two conifer forests. Remote Sens. Environ 2008, 112, 3947–3957.
[16]
Chen, J.M.; Cihlar, J. Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sens. Environ 1996, 55, 153–162.
[17]
Wang, Q.; Adiku, S.; Tenhunen, J.; Granier, A. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens. Environ 2005, 94, 244–255.
[18]
Yang, W.; Dong, H.; Bin, T.; Stroeve, J.C.; Shabanov, N.V.; Knyazikhin, Y.; Nemani, R.R.; Myneni, R.B. Analysis of leaf area index and fraction of PAR absorbed by vegetation products from the terra MODIS sensor: 2000–2005. IEEE Trans. Geosci. Remote Sens 2006, 44, 1829–1842.
[19]
Propastin, P.; Kappas, M. Retrieval of coarse-resolution leaf area index over the republic of kazakhstan using NOAA AVHRR satellite data and ground measurements. Remote Sens 2012, 4, 220–246.
[20]
Asner, G.P.; Powell, G.V.N.; Mascaro, J.; Knapp, D.E.; Clark, J.K.; Jacobson, J.; Kennedy-Bowdoin, T.; Balaji, A.; Paez-Acosta, G.; Victoria, E.; et al. High-resolution forest carbon stocks and emissions in the Amazon. Proc. Natl. Acad. Sci. USA 2010, 107, 16738–16742.
[21]
Hearst Forest Management Inc. Current Forest Condition, Available online: http://www.hearstforest.com/english/current.html (accessed on 16 June 2011).
[22]
Hearst Forest Management Inc. Forest Management Plan for the Hearst Forest; Hearst Forest Management Inc.: Hearst, ON, Canada, 2007.
[23]
Woods, M.; Pitt, D.; Penner, M.; Lim, K.; Nesbitt, D.; Etheridge, D.; Treitz, P. Operational implementation of a LiDAR inventory in Boreal Ontario. For. Chron 2011, 87, 512–528.
[24]
North West Geomatics. The Hearst Forest-North Western Ontario; North West Geomatics: Calgary, AB, Canada, 2008.
[25]
Environment Canada. Canadian Climate Normals 1971–2000: Geraldton, Available online: http://www.climate.weatheroffice.gc.ca/climate_normals/index_e.html (accessed on 16 June 2011).
[26]
Leblanc, S. DHP-TRACWin Manual; Natural Resources Canada-Canada Centre for Remote Sensing: Québec, QC, Canada, 2008.
[27]
Chen, J.M.; Rich, P.M.; Gower, S.T.; Norman, J.M.; Plummer, S. Leaf area index of boreal forests: Theory, techniques, and measurements. J. Geophys. Res 1997, 102, 29429–29443.
[28]
Thomas, V.; Noland, T.; Treitz, P.; McCaughey, J.H. Leaf area and clumping indices for a boreal mixed-wood forest: Lidar, hyperspectral, and Landsat models. Int. J. Remote Sens 2011, 32, 8271–8297.
[29]
Gower, S.T.; Kucharik, C.J.; Norman, J.M. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sens. Environ 1999, 70, 29–51.
[30]
Chen, J.; Leblanc, S.; Thomas, V.. Personal Commumication. January 2012.
[31]
Van Ewijk, K.. Personal Communication April 2011 .
[32]
Barr, A.G.; Black, T.A.; Hogg, E.H.; Kljun, N.; Morgenstern, K.; Nesic, Z. Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. Agric. For. Meteorol 2004, 126, 237–255.
[33]
Rencher, A.C.; Pun, F.C. Inflation of R2 in best subset regression. Technometrics 1980, 22, 49–53.
[34]
STATISTICA. StatSoft, Inc.: Tulsa, OK, USA, 2012.
[35]
De Veaux, R.; Velleman, P.; Bock, D. Stats-Data and Models; Pearson Addison Wesley: Toronto, ON, Canada, 2005.
[36]
Moorthy, I.; Miller, J.; Hu, B.; Chen, J.; Li, Q. Retrieving crown leaf area index from an individual tree using ground-based lidar data. Can. J. Remote Sens 2008, 34, 320–332.
[37]
Van Ewijk, K.Y.; Treitz, P.M.; Scott, N.A. Characterizing forest succession in central Ontario using lidar-derived indices. Photogramm. Eng. Remote Sens 2011, 77, 261–269.
[38]
Woods, M.; Lim, K.; Treitz, P. Predicting forest stand variables from LiDAR data in the Great Lakes-St. Lawrence forest of Ontario. For. Chron 2008, 84, 827–839.
[39]
Treitz, P.; Lim, K.; Woods, M.; Pitt, D.; Nesbitt, D.; Etheridge, D. LiDAR sampling density for forest resource inventories in Ontario, Canada. Remote Sens 2012, 4, 830–848.
[40]
Peduzzi, A.; Wynne, R.H.; Fox, T.R.; Nelson, R.F.; Thomas, V.A. Estimating leaf area index in intensively managed pine plantations using airborne laser scanner data. For. Ecol. Manag 2012, 270, 54–65.
[41]
Chasmer, L.; Hopkinson, C.; Treitz, P.; McCaughey, H.; Barr, A.; Black, A. A lidar-based hierarchical approach for assessing MODIS fPAR. Remote Sens. Environ 2008, 112, 4344–4357.
[42]
Stenberg, P.; Rautiainen, M.; Manninen, T. Reduced simple ratio better than NDVI for estimating LAI in Finnish pine and spruce stands. Silva Fenn 2004, 38, 3–14.
[43]
Davi, H.; Soudani, K.; Deckx, T.; Dufrene, E.; le Dantec, V.; Francois, C. Estimation of forest leaf area index from SPOT imagery using NDVI distribution over forest stands. Int. J. Remote Sens 2006, 27, 885–902.
[44]
Eklundh, L.; Hall, K.; Eriksson, H.; Ard?, J.; Pilesj?, P. Investigating the use of Landsat thematic mapper data for estimation of forest leaf area index in southern Sweden. Can. J. Remote Sens 2003, 29, 349–362.
[45]
Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ 1988, 25, 295–309.