全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

GIS-Based Detection of Gullies in Terrestrial LiDAR Data of the Cerro Llamoca Peatland (Peru)

DOI: 10.3390/rs5115851

Keywords: LiDAR, terrestrial laser scanning, GIS, gully detection, geomorphometry, peatland

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cushion peatlands are typical features of the high altitude Andes in South America. Due to the adaptation to difficult environmental conditions, they are very fragile ecosystems and therefore vulnerable to environmental and climate changes. Peatland erosion has severe effects on their ecological functions, such as water storage capacity. Thus, erosion monitoring is highly advisable. Erosion quantification and monitoring can be supported by high-resolution terrestrial Light Detection and Ranging (LiDAR). In this study, a novel Geographic Information System (GIS)-based method for the automatic delineation and geomorphometric description of gullies in cushion peatlands is presented. The approach is a multi-step workflow based on a gully edge extraction and a sink filling algorithm applied to a conditioned digital terrain model. Our method enables the creation of GIS-ready polygons of the gullies and the derivation of geomorphometric parameters along the entire channel course. Automatically derived boundaries and gully area values correspond to a high degree (93%) with manually digitized reference polygons. The set of methods developed in this study offers a suitable tool for the monitoring and scientific analysis of fluvial morphology in cushion peatlands.

References

[1]  Valentin, C.; Poesen, J.; Li, Y. Gully erosion: Impacts, factors and control. Catena 2005, 63, 132–153.
[2]  Squeo, F.A.; Warner, B.G.; Aravena, R.; Espinoza, D. Bofedales: High altitude peatlands of the central Andes. Revista Chilena de Historia Natural 2006, 79, 245–255.
[3]  Alzérreca, H.; Laura, J.; Loza, F.; Lunda, D.; Ortega, J. Importance of Carrying Capacity of Sustainable Management of Key-andean Puna Rangelands (Bofedales) in Ulla Ulla, Bolivia. In Land Use Change and Mountain Biodiversity; Spehn, E., Liberman, M., K?rner, C., Eds.; CRC Press, Taylor & Francis: Boca Raton, FL, USA, 2006; pp. 167–185.
[4]  Schittek, K.; Forbriger, M.; Sch?bitz, F.; Eitel, B. Cushion Peatlands—Fragile Water Resources in the High Andes of Southern Peru. In Water—Contributions to Sustainable Supply and Use, Landscape and Sustainable Development; Weingartner, H., Blumenstein, O., Vavelidis, M., Eds.; Workinggroup Landscape and Sustainable Development: Salzburg, Austria, 2012; pp. 63–84.
[5]  Marzolff, I.; Ries, J.B. Gully erosion monitoring in semi-arid landscapes. Z. Geomorphol 2007, 51, 405–425.
[6]  Bocco, G. Gully erosion: Processes and models. Prog. Phys. Geog 1991, 15, 392–406.
[7]  Morgan, R.P.C. Soil erosion; Longman: London, UK, New York, NY, USA, 1979; p. 113.
[8]  Evans, M.; Warburton, J.; Yang, J. Eroding blanket peat catchments: Global and local implications of upland organic sediment budgets. Geomorphology 2006, 79, 45–57.
[9]  Evans, M.; Warburton, J. Geomorphology of Upland Peat: Erosion, Form and Landscape Change; Wiley-Blackwell: West Sussex, UK, 2008.
[10]  Holden, J.; Gascoign, M.; Bosanko, N.R. Erosion and natural revegetation associated with surface land drains in upland peatlands. Earth Surf. Process. Landforms 2007, 32, 1547–1557.
[11]  Hancock, G.R.; Crawter, D.; Fityus, S.G.; Chandler, J.; Wells, T. The measurement and modelling of rill erosion at angle of repose slopes in mine spoil. Earth Surf. Process. Landforms 2008, 33, 1006–1020.
[12]  Hohenthal, J.; Alho, P.; Hyypp?, J.; Hyypp?, H. Laser scanning applications in fluvial studies. Prog. Phys. Geog 2011, 35, 782–809.
[13]  H?fle, B.; Rutzinger, M. Topographic airborne LiDAR in geomorphology: A technological perspective. Z. Geomorphol 2011, 55, 1–29.
[14]  Heritage, G.L.; Milan, D.J.; Large, A.R.G.; Fuller, I.C. Influence of survey strategy and interpolation model on DEM quality. Geomophology 2009, 112, 334–344.
[15]  Heritage, G.L.; Hetherington, D. Towards a protocol for laser scanning in fluvial geomorphology. Earth Surf. Process. Landforms 2008, 32, 66–74.
[16]  Pirotti, F.; Guarnieri, A.; Vettore, A. Ground filtering and vegetation mapping using multi-return terrestrial laser scanning. ISPRS J. Photogramm. Remote Sens 2013, 76, 56–63.
[17]  Castillo, C.; Pérez, R.; James, M.R.; Quinton, J.N.; Taguas, E.V; Gómez, J.A. Comparing the Accuracy of Several Field Methods for Measuring Gully Erosion. Soil Sci. Soc. Am. J 2011, 76, 1319–1332.
[18]  Momm, H.; Bingner, R.; Wells, R.; Dabney, S. Methods for Gully Characterization in Agricultural Croplands Using Ground-Based Light Detection and Ranging. In Sediment Transport—Flow and Morphological Processes; Bhuiyan, F., Ed.; InTech: Croatia, 2011.
[19]  Rutzinger, M.; H?fle, B.; Vetter, M.; Pfeifer, N. Digital Terrain Models from Airborne Laser Scanning for the Automatic Extraction of Natural and Anthropogenic Linear Structures. In Geomorphological Mapping; Smith, M.J., Paron, P., Griffiths, J.S., Eds.; Elsevier: Oxford, UK, 2011; pp. 475–488.
[20]  Rutzinger, M.; H?fle, B.; Kringer, K. Accuracy of automatically extracted geomorphological breaklines from airborne LiDAR curvature images. Geografiska. Annaler.: Series A, Phys. Geogr 2012, 94, 33–42.
[21]  Van Asselen, S.; Seijmonsbergen, A. Expert-driven semi-automated geomorphological mapping for a mountainous area using a laser DTM. Geomorphology 2006, 78, 309–320.
[22]  Poesen, J.; Nachtergaele, J.; Verstaeten, G.; Valentin, C. Gully erosion and environmental change: Importance and research needs. Catena 2003, 50, 91–133.
[23]  Marzolff, I.; Poesen, J. The potential of 3D gully monitoring with GIS using high-resolution aerial photography and a digital photogrammetry system. Geomorphology 2009, 111, 48–60.
[24]  Shruthi, R.B.; Kerle, N.; Jetten, V. Object-based gully feature extraction using high spatial resolution imagery. Geomorphology 2011, 134, 260–268.
[25]  D’Oleire-Oltmanns, S.; Eisank, C.; Dr?gut, L.; Blaschke, T. An object-based workflow to extract landforms at multiple scales from two distinct data types. IEEE Geosci. Remote Sens 2013, 10, 947–951.
[26]  James, L.A.; Watson, D.G.; Hansen, W.F. Using LiDAR data to map gullies and headwater streams under forest canopy: South Carolina, USA. Catena 2007, 71, 132–144.
[27]  Jones, A.F.; Brewer, P.A.; Johnstone, E.; Macklin, M.G. High-resolution interpretative geomorphological mapping of river valley environments using airborne LiDAR data. Earth Surf. Process. Landforms 2007, 32, 1574–1592.
[28]  Notebaert, B.; Verstraeten, G.; Govers, G.; Poesen, J. Qualitative and quantitative applications of LiDAR imagery in fluvial geomorphology. Earth Surf. Process. Landforms 2009, 34, 217–231.
[29]  Milan, D.J.; Heritage, G.L.; Hetherington, D. Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river. Earth Surf. Process. Landforms 2007, 32, 1657–1674.
[30]  Picco, L.; Mao, L.; Cavalli, M.; Buzzi, E.; Rainato, R.; Lenzi, M.A. Evaluating short-term morphological changes in a gravel-bed braided river using terrestrial laser scanner. Geomorphology 2013, doi:10.1016/j.geomorph.2013.07.007..
[31]  Evans, M.; Lindsay, J. High resolution quantification of gully erosion in upland peatlands at the landscape scale. Earth Surf. Process. Landforms 2010, 35, 876–886.
[32]  Sofia, G.; Tarolli, P.; Cazorzi, F.; Dalla Fontana, G. An objective approach for feature extraction: distribution analysis and statistical descriptors for scale choice and channel network identification. Hydrol. Earth Syst. Sci 2011, 15, 1387–1402.
[33]  Baruch, A.; Filin, S. Detection of gullies in roughly textured terrain using airborne laser scanning data. ISPRS J. Photogramm. Remote Sens 2011, 66, 564–578.
[34]  H?fle, B. Radiometric correction of terrestrial LiDAR point cloud data for individual maize plant detection. IEEE Geosci. Remote Sens. 2013, doi:10.1109/LGRS.2013.2247022..
[35]  Momm, H.G.; Binger, R.L.; Wells, R.R.; Dabney, S.M.; Frees, L.D. Effect of terrestrial LiDAR point sampling density in ephemeral gully characterization. Open J. Mod. Hydrol 2013, 3, 38–49.
[36]  Perroy, R.L.; Bookhagen, B.; Asner, G.P.; Chadwick, O.A. Comparison of gully erosion estimates using airborne and ground-based LiDAR on Santa Cruz Island, California. Geomorphology 2010, 118, 288–300.
[37]  Riegl. Available online: http://www.riegl.com (accessed on 16 August 2013).
[38]  Pfeifer, N.; Mandlburger, G.; Otepka, J.; Karel, W. OPALS—A framework for Airborne Laser Scanning data analysis. Comput. Environ. Urban 2013. in press.
[39]  Arge, L.; Chase, J.S.; Halpin, P.N.; Toma, L.; Vitter, J.S.; Urban, D.; Wickremesinghe, R. Flow computation on massive grid terrains. GeoInformatica 2003, 7, 283–313.
[40]  Metz, M.; Mitasova, H.; Harmon, R.S. Efficient extraction of drainage networks from massive, radar-based elevation models with least cost path search. Hydrol. Earth Syst. Sci 2011, 15, 667–678.
[41]  Neteler, M.; Bowman, M.H.; Landa, M.; Metz, M. GRASS GIS: A multi-purpose open source GIS. Environ. Model. Softw 2012, 31, 124–130.
[42]  Wood, J. The Geomorphological Characterisation of Digital Elevation ModelsPh.D. Dissertation. University of Leicester, Leicester, UK, 1996.
[43]  Thommeret, N.; Bailly, J.S.; Puech, C. Extraction of thalweg networks from DTMs: Application to badlands. Hydrol. Earth Syst. Sci 2010, 14, 1527–1536.
[44]  GRASS Development Team—GRASS GIS 6.4.3 Reference Manual. Available online: http://grass.fbk.eu/grass64/manuals/html64_user/index.html (accessed on 9 June 2012).
[45]  Karimipour, F.; Ghandehari, M.; Ledoux, H. Watershed delineation from the medial axis of river networks. Comput. Geosci 2013, 59, 132–147.
[46]  H?fle, B.; Vetter, M.; Pfeifer, N.; Mandlburger, G.; St?tter, J. Water surface mapping from airborne laser scanning using signal intensity and elevation data. Earth Surf. Process. Landforms 2009, 34, 1635–1649.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133