全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assimilation of MODIS Snow Cover Area Data in a Distributed Hydrological Model Using the Particle Filter

DOI: 10.3390/rs5115825

Keywords: data assimilation, particle filter, distributed hydrological model, MODIS Snow Cover Area, discharge, LISFLOOD, Danube

Full-Text   Cite this paper   Add to My Lib

Abstract:

Snow is an important component of the water cycle, and its estimation in hydrological models is of great significance concerning the simulation and forecasting of flood events due to snow-melt. The assimilation of Snow Cover Area (SCA) in physical distributed hydrological models is a possible source of improvement of snowmelt-related floods. In this study, the assimilation in the LISFLOOD model of the MODIS sensor SCA has been evaluated, in order to improve the streamflow simulations of the model. This work is realized with the final scope of improving the European Flood Awareness System (EFAS) pan-European flood forecasts in the future. For this purpose daily 500 m resolution MODIS satellite SCA data have been used. Tests were performed in the Morava basin, a tributary of the Danube, for three years. The particle filter method has been chosen for assimilating the MODIS SCA data with different frequencies. Synthetic experiments were first performed to validate the assimilation schemes, before assimilating MODIS SCA data. Results of the synthetic experiments could improve modelled SCA and discharges in all cases. The assimilation of MODIS SCA data with the particle filter shows a net improvement of SCA. The Nash of resulting discharge is consequently increased in many cases.

References

[1]  Nelson, K.; Kurc, S.A.; John, G.; Minor, R.; Barron-Gafford, G.A. Influence of snow cover duration on soil evaporation and respiration efflux in mixed-conifer ecosystems. Ecohydrology 2013, doi:10.1002/eco.1425..
[2]  Barnett, T.P.; Dumenil, L.; Schlese, U.; Roechner, E.; Latif, M. The effects of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci 1989, 46, 66–685.
[3]  Boone, A.; Etchevers, P. An intercomparison of three snow schemes of varying complexity coupled to the same land-surface model: Local scale evaluation at an Alpine site. J. Hydrometeorol 2001, 2, 374–394.
[4]  Decker, K.L.M.; Wang, D.; Waite, C.; Scherbatskoy, T. Snow removal and ambient air temperature effects on forest soil temperatures in northern Vermont. Soil Sci. Soc. Am. J 2003, 67, 1234–1242.
[5]  Clark, M.P.; Slater, A.G.; Barrett, A.P.; Hay, L.E.; McCabe, G.J.; Rajagopalan, B.; Leavesley, G.H. Assimilation of snow covered area information into hydrologic and land-surface models. Adv. Water Resour 2006, 29, 1209–1221.
[6]  Zaitchik, B.; Rodell, M. Forward-looking assimilation of MODIS-derived snow-covered area into a land surface model. J. Hydrometeorol 2009, 10, 130–148.
[7]  Aksoy, A.; Aberson, S.D.; Vukicevic, T.; Sellwood, K.J.; Lorsolo, S.; Zhang, X. Assimilation of high-resolution tropical cyclone observations with an ensemble kalman filter using NOAA/AOML/HRD’s HEDAS: Evaluation of the 2008–11 vortex-scale analyses. Mon. Wea. Rev 2013, 141, 1842–1865.
[8]  Pu, Z.; Zhang, H.; Anderson, J. Ensemble Kalman filter assimilation of near-surface observations over complex terrain: Comparison with 3DVAR for short-range forecasts. Dyn. Meteorol. Oceanogr. 2013, 65. art. no. 19620.
[9]  Sun, C.; Hao, Z.; Ghil, M.; Neelin, J.D. Data assimilation for a coupled ocean-atmosphere model. Part I: Sequential state estimation. Mon. Wea. Rev 2002, 130, 1073–1099.
[10]  Reichle, R.H.; McLaughlin, D.B.; Entekhabi, D. Hydrologic data assimilation with the Ensemble Kalman Filter. Mon. Wea. Rev 2002, 130, 103–114.
[11]  Crow, W.T.; Ryu, D. A new data assimilation approach for improving runoff prediction using remotely-sensed soil moisture retrievals. Hydrol. Earth Syst. Sci 2009, 13, 1–16.
[12]  Salamon, P.; Feyen, L. Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter. J. Hydrol 2009, 376, 428–442.
[13]  Thirel, G.; Martin, E.; Mahfouf, J.-F.; Massart, S.; Ricci, S.; Habets, F. A past discharges assimilation system for ensemble streamflow forecasts over France—Part 1: Description and validation of the assimilation system. Hydrol. Earth Syst. Sci 2010, 14, 1623–1637.
[14]  Liu, Y.; Weerts, A.H.; Clark, M.; Franssen, H.-J.H.; Kumar, S.; Moradkhani, H.; Seo, D.-J.; Schwanenberg, D.; Smith, P.; van Dijk, A.I.J.M.; et al. Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities. Hydrol. Earth Syst. Sci 2012, 16, 3863–3887.
[15]  Rodell, M.; Houser, P.R. Updating a land surface model with MODIS-derived snow cover. J. Hydrometeorol 2004, 8, 1064–1075.
[16]  Andreadis, K.M.; Lettenmaier, D.P. Assimilating remotely sensed snow observations into a macroscale hydrology model. Adv. Water Resour 2006, 29, 872–886.
[17]  Su, H.; Yang, Z.-L.; Niu, G.-Y.; Dickinson, R.E. Enhancing the estimation of continental-scale snow water equivalent by assimilating MODIS snow cover with the ensemble Kalman filter. J. Geophys. Res. 2008, 113, doi:10.1029/2007JD009232..
[18]  Bavera, D.; de Michele, C. Snow water equivalent estimation in the Mallero basin using snow gauge data and MODIS images and fieldwork validation. Hydrol. Process 2009, 23, 1961–1972.
[19]  Roy, A.; Royer, A.; Turcotte, R. Improvement of springtime streamflow simulations in a boreal environment by incorporating snow-covered area derived from remote sensing data. J. Hydrol 2010, 390, 35–44.
[20]  Yatheendradas, S.; Peters-Lidard, C.D.; Koren, V.; Cosgrove, B.A.; De Goncalves, L.G.G.; Smith, M.; Geiger, J.; Cui, Z.; Borak, J.; Kumar, S.; et al. Distributed assimilation of satellite-based snow extent for improving simulated streamflow in mountainous, dense forests: An example over the DMIP2 western basins. Water Resour. Res. 2012, 48, doi:10.1029/2011WR011347..
[21]  Liu, Y.; Peters-Lidard, C.D.; Kumar, S.; Foster, J.L.; Shaw, M.; Tian, Y.; Fall, G.M. Assimilating satellite-based snow depth and snow cover products for improving snow predictions in Alaska. Adv. Water Resour 2013, 54, 208–227.
[22]  Pulliainen, J.; Hallikainen, M. Retrieval of regional snow water equivalent from space-borne passive microwave observations. Remote Sens. Environ 2001, 75, 76–85.
[23]  Dong, J.; Walker, J.P.; Houser, P.R. Factors affecting remotely sensed snow water equivalent uncertainty. Remote Sens. Environ 2005, 97, 68–82.
[24]  Parajka, J.; Bl?schl, G. Validation of MODIS snow cover images over Austria. Hydrol. Earth Syst. Sci 2006, 10, 679–689.
[25]  Gafurov, A.; Bàrdossy, A. Cloud removal methodology from MODIS snow cover product. Hydrol. Earth Syst. Sci 2009, 13, 1361–1373.
[26]  Gao, Y.; Xie, H.; Lu, N.; Yao, T.; Liang, T. Toward advanced daily cloud-free snow cover and snow water equivalent products from Terra-Aqua MODIS and Aqua AMSR-E measurements. J. Hydrol 2010, 385, 23–35.
[27]  Parajka, J.; Bl?schl, G. Spatio-temporal combination of MODIS images—Potential for snow cover mapping. Water Resour. Res. 2008, 44, doi:10.1029/2007WR006204..
[28]  Parajka, J.; Pepe, M.; Rampini, A.; Rossi, S.; Bl?schl, G. A regional snow-line method for estimating snow cover from MODIS during cloud cover. J. Hydrol 2009, 381, 203–212.
[29]  Slater, A.G.; Clark, M.P. Snow data assimilation via an Ensemble Kalman Filter. J. Hydrometeorol 2006, 7, 478–493.
[30]  Clark, M.P.; Vrugt, J.A. Unraveling uncertainties in hydrologic model calibration: Addressing the problem of compensatory parameters. Geophys. Res. Lett. 2006, 33, doi:10.1029/2005GL025604..
[31]  Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol 1970, 10, 282–290.
[32]  Lindstr?m, G.; Johansson, B.; Persson, M.; Gardelin, M.; Bergstr?m, S. Development and test of the distributed HBV-96 hydrological model. J. Hydrol 1997, 201, 272–288.
[33]  Thielen, J.; Bartholmes, J.; Ramos, M.-H.; de Roo, A. The European Flood Alert System—Part 1: Concept and development. Hydrol. Earth Syst. Sci 2009, 13, 125–140.
[34]  Doucet, A.; de Freitas, N.; Gordon, N. Sequential Monte Carlo Methods in Practice; Springer: New York, NY, USA, 2001.
[35]  Simon, D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches; Wiley-Interscience: Hoboken, NJ, USA, 2006.
[36]  Van Leeuwen, P.J. Particle filtering in geophysical systems. Mon. Wea. Rev 2009, 137, 4089–4114.
[37]  Arulampalam, M.S.; Markell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process 2002, 50, 174–188.
[38]  Chin, T.M.; Turmon, M.J.; Jewell, J.B.; Ghil, M. An ensemble-based smoother with retrospectively updated weights for highly nonlinear systems. Mon. Wea. Rev 2007, 135, 186–202.
[39]  Baker, J.E. Reducing Bias and Inefficiency in the Selection Algorithm. Proceedings of the Second International Conference on Genetic Algorithms and their Application; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1987; pp. 14–21.
[40]  Moradkhani, H.; Hsu, K.-L.; Gupta, H.; Sorooshian, S. Uncertainty assessment of hydrologic model states and parameters. Water Resour. Res. 2005, 41, doi:10.1029/2004WR003604..
[41]  Hall, D.K.; Riggs, G.A.; Salomonson, V.V. MODIS/Aqua Snow Cover Daily L3 Global 500m Grid V005. July 2003 to December 2006;; National Snow and Ice Data Center: Boulder, CO, USA, 2006.
[42]  Hall, D.K.; Riggs, G.A.; Salomonson, V.V. MODIS/Terra Snow Cover Daily L3 Global 500m Grid V005. July 2003 to December 2006;; National Snow and Ice Data Center: Boulder, CO, USA, 2006.
[43]  Sirguey, P.; Mathieu, R.; Arnaud, Y. Subpixel monitoring of the seasonal snow cover with MODIS at 250 m spatial resolution in the Southern Alps of New Zealand: Methodology and accuracy assessment. Remote Sens. Environ 2009, 113, 160–181.
[44]  Painter, T.H.; Rittger, K.; McKenzie, C.; Slaughter, P.; Davis, R.E.; Dozier, J. Retrieval of subpixel snow-covered area, grain size, and albedo from MODIS. Remote Sens. Environ 2009, 113, 868–879.
[45]  Niu, G.-Y.; Yang, Z.-L. An observation-based formulation of snow cover fraction and its evaluation over large North American river basins. J. Geophys. Res. 2007, 112, doi:10.1029/2007JD008674..
[46]  Koren, V.; Schaake, J.; Mitchell, K.; Duan, Q.Y.; Chen, F.; Baker, J.M. A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res 1999, 104, 19569–19585.
[47]  De Roo, A. LISFLOOD: A Rainfall-runoff Model for Large River Basins to Assess the Influence of Land Use Changes on Flood Risk. In Ribamod: river basin modelling, management and flood mitigation; Balabanis, P., Ed.; European Commission: Wallingford, UK, 1999; pp. 349–357.
[48]  Van der Knijff, J.; Younis, J.; de Roo, A. LISFLOOD—A GIS-based distributed model for river basin scale water balance and flood simulation. Int. J. Geogr. Inf. Sci 2010, 24, 189–212.
[49]  Karssenberg, D. The value of environmental modelling languages for building distributed hydrological models. Hydrol. Process 2002, 16, 2751–2766.
[50]  W?sten, J.H.M.; Lilly, A.; Nemes, A.; Le Bas, C. Development and use of a database of hydraulic properties of European soils. Geoderma 1999, 90, 169–185.
[51]  European Environment Agency. The European Topic Centre on Terrestrial Environment: Corine Land Cover raster database 2000–100m; European Environment Agency: Copenhagen, Denmark, 2000.
[52]  King, D.; Daroussin, J.; Tavernier, R. Development of a soil geographical database from the soil map of the European communities. Catena 2004, 21, 37–56.
[53]  Rijks, D.; Teres, J.M.; Vossen, P. Agrometeorological Applications for Regional Crop Monitoring and Production Assessment. Tech. Rep. EUR 17735 EN;; Eur. Comm. Joint Res. Cent.: Ispra, Italy, 1998.
[54]  Zhao, R.J.; Liu, X.R. The Xinanjiang Model. In Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resources Publications: Colorado, CO, USA, 1995; pp. 215–232.
[55]  Todini, E. The ARNO rainfall-runoff. J. Hydrol 1996, 175, 339–382.
[56]  Chow, V.T.; Maidment, D.R.; Mays, L.M. Applied Hydrology; McGraw-Hill: Singapore, 1988; p. 572.
[57]  Viviroli, D.; Zappa, M.; Gurtz, J.; Weingartner, R. An introduction to the hydrological modelling system PREVAH and its pre- and post-processing tools. Environ. Model. Softw 2009, 24, 1209–1222.
[58]  Finger, D.; Pellicciotti, F.; Konz, M.; Rimkus, S.; Burlando, P. The value of glacier mass balance, satellite snow cover images, and hourly discharge for improving the performance of a physically based distributed hydrological model. Water Resour. Res. 2011, 47, doi:10.1029/2010WR009824..
[59]  Speers, D.D.; Versteeg, J.D. Runoff Forecasting for Reservoir Operations—The Past and the Future. In Proceedings of the 52nd Western Snow Conference; Western Snow Conference: Fort Collins, CO, USA, 1982; pp. 149–156.
[60]  Anderson, E. Snow Accumulation and Ablation Model—SNOW-17. Technical Report;; NWSRFS: Silver Spring, MD, USA, 2006; p. 61.
[61]  Burek, P.; de Roo, A. LISFLOOD—Distributed Water Balance and Flood Simulation Model. User Manual Version December 2010;; European Commission: Ispra, Italy, 2011.
[62]  Quintana Seguí, P.; Le Moigne, P.; Durand, Y.; Martin, E.; Habets, F.; Baillon, M.; Canellas, C.; Franchisteguy, L.; Morel, S. Analysis of near surface atmospheric variables: Validation of the SAFRAN analysis over France. J. Appl. Meteorol. Climatol 2008, 47, 92–107.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133