The South African Weather Service is mandated to issue warnings of hazardous weather events, including those related to heavy precipitation, in order to safeguard life and property. Flooding and flash flood events are common in South Africa. Frequent updates and real-time availability of precipitation data are crucial to support hydrometeorological warning services. Satellite rainfall estimation provides a very important data source for flash flood guidance systems as well as nowcasting of precipitation events for the data sparse regions of the African continent. Although low earth orbiting satellites with microwave instruments provide good quality rainfall estimates, their temporal and spatial resolution are not adequate for time-critical services. Precipitation estimation using geostationary satellites is less accurate, but provides excellent spatial coverage, is updated frequently and is available in real-time. This study compares different ways to use and combine satellite precipitation estimates and numerical weather prediction model fields over the South African domain in order to determine the optimal estimate of precipitation, which can also be applied in real-time to support flash flood guidance.
Kidd, C.; Bauer, P.; Turk, J.; Huffman, G.J.; Joyce, R.; Hsu, K.-L.; Braithwaite, D. Intercomparison of high-resolution precipitation products over northwest Europe. J. Hydrometeorol 2012, 13, 67–83.
[3]
NOAA STAR—Centre for Satellite Applications and Research. Available online: http://www.star.nesdis.noaa.gov/smcd/emb/ff/index.php (accessed on 22 July 2013).
[4]
De Coning, E. Satellite Applications for Very Short Range Weather Forecasting Systems in Southern African Developing Countries. In Recent Advances in Satellite Research and Development, 1st ed; Gardiner, S., Olsen, K.P., Eds.; Nova Science Publishers, Inc: Hauppauge, NY, USA, 2013; pp. 67–92.
[5]
IPWG Data sets. Available online: http://www.isac.cnr.it/~ipwg/data/datasets.html (accessed on 22 July 2013).
[6]
EUMETSAT Current Satellites. Available online: http://www.eumetsat.int/website/home/Satellites/CurrentSatellites/Meteosat/index.html (accessed on 22 July 2013).
[7]
EUMETSAT Satellite Application Facilities. Available online: http://www.eumetsat.int/website/home/Satellites/GroundSegment/Safs/index.html/ (accessed on 22 July 2013).
[8]
Schmetz, J.; Pili, P.; Tjemkes, S.; Just, D.; Kerkmann, J; Rota, S.; Ratier, A. An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteorol. Soc 2002, 83, 977–992.
[9]
EUMETSAT Data Products. Available online: http://www.eumetsat.int/website/home/Data/Products/index.html (accessed on 22 July 2013).
[10]
Kothe, S.; Good, E.; Obregon, A.; Ahrens, B.; Nitsche, H. Satellite-based sunshine duration for Europe. Remote Sens 2013, 5, 2943–2972.
[11]
Olsen, J.; Ceccato, P.; Proud, S.; Fensholt, R.; Grippa, M.; Mougin, E.; Ardo, J.; Sandholt, I. Relation between seasonally detrended shortwave infrared reflectance data and land surface moisture in semi-arid Sahel. Remote Sens 2013, 5, 2898–2927.
[12]
Romano, F.; Ricciardelli, E.; Cimini, D.; Di Paola, F.; Viggiano, M. Dust detection and optical depth retrieval using MSG-SEVIRI data. Atmosphere 2013, 4, 35–47.
[13]
Marchese, F.; Ciampa, M.; Filizzola, C.; Lacava, T.; Mazzeo, G.; Pergola, N.; Tramutoli, V. On the exportability of Robust Satellite Techniques (RST) for active volcano monitoring. Remote Sens 2010, 2, 1575–1588.
Davies, T.; Cullen, M.J.P.; Malcolm, A.J.; Mawsom, M.H.; Staniforth, A.; White, A.A.; Wood, N. A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. R. Meteorol. Soc 2005, 131, 1759–1782.
[16]
IPWG Singles Source Data Set. Available online: http://www.isac.cnr.it/~ipwg/data/datasets3.html (accessed on 22 July 2013).
[17]
Kuligowski, R.J.; Qiu, S.; Scofield, R.A.; Gruber, A. The NESDIS QPE Verification Program. Proceedings of the 11th Conference on Satellite Meteorology and Oceanography, Madison, WI, USA; 2001.
[18]
Poolman, E.R.; Chikoore, H.; Lucio, F. Public benefits of the severe weather forecasting demonstration project in South-Eastern Africa. WMO Newsl. MeteoWorld, December 2008. Available online: http://www.wmo.int/pages/publications/meteoworld/archive/dec08/index_en.html (accessed on 18 July 2013).
[19]
Georgakakos, K.P. Analytical results for operational flash flood guidance. J. Hydrol 2006, 317, 81–103.
[20]
Georgakakos, K.P. Mitigating Adverse Hydrological Impacts of Storm on a Global Scale with High Resolution: Global Flash Flood Guidance. Proceedings of the International Conference on Storms, Storms Science to Disaster Mitigation, Brisbane, QLD, Australia, 2004.
[21]
De Coning, E.; Poolman, E.R. South African weather service operational satellite-based precipitation estimation technique: Applications and improvements. Hydrol. Earth Syst. Sci 2011, 15, 1131–1145.
[22]
De Coning, E. Satellite-based precipitation estimation techniques for operational use over southern Africa. Proceeding of the 16th SANCIAHS National Hydrology Symposium, Pretoria, South Africa, 1–4 October 2012; Available online: http://www.ru.ac.za/static/institutes/iwr/SANCIAHS/2012/ (accessed on 1 August 2013).
[23]
Kruger, A.C. Climate of South Africa, Precipitation. Report No. WS47;; South African Weather Service: Pretoria, South Africa, 2007; pp. 1–41.
[24]
IPWG. Available online: http://www.isac.cnr.it/~ipwg// (accessed on 22 July 2013).
[25]
CGMS. Available online: http://www.cgms-info.org/ (accessed on 22 July 2013).
[26]
WMO. Available online: http://www.wmo.int/pages/index_en.html (accessed on 22 July 2013).
[27]
Ferraro, R.; Kidd, C.; Arkin, P.; Turk, J. Satellite Precipitation Activities of the International Precipitation Working Group. Proceedings of the 23rd AMS Conference on Hydrology, Phoenix, AZ, USA, 2013. Abstract 5B.1.
[28]
IPWG Validation. Available online: http://www.isac.cnr.it/~ipwg/validation.html (accessed on 22 July 2013).
[29]
Huffman, G.J. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol 2007, 8, 38–55.
[30]
Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol 2004, 5, 487–503.
[31]
Purdom, J.F.W.; Dills, P.N. Cloud Motion and Height Measurements from Multiple Satellites Including Cloud Heights and Motions in Polar Regions. Proceedings of the Seventh Conference on Satellite Meteorology and Oceanography, Monterey, CA, USA, 1994.
[32]
Janowiak, J.E.; Joyce, R.J.; Yarosh, Y. A real-time global half-hourly grid box-resolution infrared dataset and its applications. Bull. Amer. Meteorol. Soc 2001, 82, 205–217.
[33]
Sorooshian, S.; Hsu, K.-L.; Gao, X.; Gupta, H.V.; Iman, B.; Braithwaite, D. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteorol. Soc 2000, 81, 2035–2046.
[34]
Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Takayabu, Y.N.; Ushio, T.; Nakagawa, K.; Iwanami, K.; et al. Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens 2007, 45, 2259–2275.
[35]
Scofield, R.A.; Kuligowski, R.J. Status and outlook of operational satellite precipitation algorithms for extreme events. Wea. Forecast 2003, 18, 1037–1051.
[36]
Wilks, D.S. Statistical Methods in Atmospheric Sciences, 2nd ed. ed.; Elsevier Science & Technology Books: Amsterdam, The Netherlands, 2006.
[37]
Forecast verification issues, methods and FAQ. Available online: http://www.cawcr.gov.au/projects/verification/#Standard_verification_methods (accessed on 19 July 2013).
[38]
Nowcasting Satellite Application Facility. Available online: https://www.nwcsaf.org/HD/Main.jsp(accessed on 23 July 2013).