全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Multi-Scale Flood Monitoring System Based on Fully Automatic MODIS and TerraSAR-X Processing Chains

DOI: 10.3390/rs5115598

Keywords: TerraSAR-X, MODIS, flood, disaster, automatic thresholding, fuzzy logic, Web GIS, multi-scale monitoring, cloud shadow modeling

Full-Text   Cite this paper   Add to My Lib

Abstract:

A two-component fully automated flood monitoring system is described and evaluated. This is a result of combining two individual flood services that are currently under development at DLR’s (German Aerospace Center) Center for Satellite based Crisis Information (ZKI) to rapidly support disaster management activities. A first-phase monitoring component of the system systematically detects potential flood events on a continental scale using daily-acquired medium spatial resolution optical data from the Moderate Resolution Imaging Spectroradiometer (MODIS). A threshold set controls the activation of the second-phase crisis component of the system, which derives flood information at higher spatial detail using a Synthetic Aperture Radar (SAR) based satellite mission (TerraSAR-X). The proposed activation procedure finds use in the identification of flood situations in different spatial resolutions and in the time-critical and on demand programming of SAR satellite acquisitions at an early stage of an evolving flood situation. The automated processing chains of the MODIS (MFS) and the TerraSAR-X Flood Service (TFS) include data pre-processing, the computation and adaptation of global auxiliary data, thematic classification, and the subsequent dissemination of flood maps using an interactive web-client. The system is operationally demonstrated and evaluated via the monitoring two recent flood events in Russia 2013 and Albania/Montenegro 2013.

References

[1]  Giustarini, L.; Hostache, R.; Matgen, P.; Schumann, G.; Bates, P.D.; Mason, D.C. A change detection approach to flood mapping in urban areas using TerraSAR-X. IEEE Trans. Geosci. Remote Sens 2013, 51, 2417–2430.
[2]  Martinis, S.; Twele, A.; Voigt, S. Towards operational near-real time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data. Nat. Hazards Earth Syst. Sci 2009, 9, 303–314.
[3]  Martinis, S.; Twele, A. A hierarchical spatio-temporal Markov model for improved flood mapping using multi-temporal X-band SAR data. Remote Sens 2010, 2, 2240–2258.
[4]  Mason, D.C.; Davenport, I.J.; Neal, J.C.; Schumann, G.J.-P.; Bates, P.D. Near real-time flood detection in urban and rural areas using high-resolution Synthetic Aperture Radar images. IEEE Trans. Geosci. Remote Sens 2012, 50, 3041–3052.
[5]  Matgen, P.; Hostache, R.; Schumann, G.; Pfister, L.; Hoffman, L.; Svanije, H.H.G. Towards an automated SAR based flood monitoring system: Lessons learned from two case studies. Phys. Chem. Earth 2011, 36, 241–252.
[6]  Schumann, G.; di Baldassarre, G.; Alsdorf, D.; Bates, P.D. Near real-time flood wave approximation on large rivers from space: Application to the River Po, Italy. Water Resour. Res 2010, 46, 1–8.
[7]  Pulvirenti, L.; Chini, M.; Marzano, F.S.; Pierdicca, N.; Mori, S.; Guerriero, L.; Boni, G.; Candela, L. Detection of Floods and Heavy Rain Using Cosmo-SkyMed Data: The Event in Northwestern Italy of November 2011. Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2012), Munich, Germany, 22–27 July 2012; pp. 3026–3029.
[8]  Pulvirenti, L.; Pierdicca, N.; Chini, M.; Guerriero, L. An algorithm for operational flood mapping from Synthetic Aperture Radar (SAR) data using fuzzy logic. Nat. Hazards Earth Syst. Sci 2011, 11, 529–540.
[9]  International Charter of Space and Major Disasters. Available online: http://www.disasterscharter.org/ (accessed on 6 August 2013).
[10]  Dartmouth Flood Observatory. Available online: http://floodobservatory.colorado.edu/ (accessed on 8 August 2013).
[11]  NRT Global MODIS Flood Mapping. Available online: http://oas.gsfc.nasa.gov/floodmap/ (accessed on 10 July 2013).
[12]  ESA Grid Processing on Demand (G-POD). Available online: http://gpod.eo.esa.int/ (accessed on 9 August 2013).
[13]  Westerhoff, R.S.; Kleuskens, M.P.H.; Winsemius, H.C.; Huizinga, H.J.; Brakenridge, G.R.; Bishop, C. Automated global water mapping based on wide-swath orbital synthetic-aperture radar. Hydrol. Earth Syst. Sci 2013, 17, 651–663.
[14]  Auynirundronkool, K.; Chen, N.; Peng, C.; Yang, C.; Gong, J.; Silapathong, C. Flood detection and mapping of the Thailand central plain using RADARSAT and MODIS under a sensor web environment. Int. J. Appl. Earth Obs. Geoinf 2012, 14, 245–255.
[15]  Mandl, D.; Cappelaere, P.G.; Frye, S.W.; Handy, M.E.; Policelli, F.; Katjizeu, M.; van Langenhove, G.; Aube, G.; Saulnier, J.-F.; Sohlberg, R.; et al. Use of the earth observing one (EO-1) satellite for the namibia SensorWeb flood early warning pilot. Int. J. Appl. Earth Obs. Geoinf 2013, 19, 298–308.
[16]  Martinis, S.; Kersten, J.; Twele, A. A fully automated TerraSAR-X based flood service. ISPRS J. Photogramm. Remote Sens. 2013. submitted.
[17]  Eberle, J.; Strobl, C. Web-based geoprocessing and workflow creation for generating and providing remote sensing products. Geomatica 2012, 66, 13–26.
[18]  Parkinson, C.L.; Greenstone, R. EOS Data Products Handbook, Volume 2; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2000.
[19]  MacDonald, M.D.; Ruebens, M.; Wang, L.; Franz, B.A. The SeaDAS Processing and Analysis System: SeaWiFS, MODIS, and Beyond. Proceedings of the American Geophysical Union, Fall Meeting, San Francisco, CA, USA, 5–9 December 2005.
[20]  Goddard Space Flight Center. ; Version 1.7.1, 2010. Available online: http://directreadout.sci.gsfc.nasa.gov/links/rsd_eosdb/PDF/CREFL_1.7.1_SPA_1.1.pdf (accessed on 1 August 2013).
[21]  Land Processes DAAC. MODIS Reprojection Tool Swath User Manual. Release 2.2;; Land Process Distributed Active Archive Center, USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2010.
[22]  Carroll, M.; Townshend, J.; DiMiceli, C.; Noojipady, P.; Sohlberg, R. A new global raster water mask at 250 meter resolution. Int. J. Digit. Earth 2009, 2, 291–308.
[23]  De Groeve, T.; Vernaccini, L.; Brakenridge, G.R.; Adler, R.; Ricko, M.; Wu, H.; Thielen, J.; Salamon, P.; Policelli, F.S.; Slayback, D.; et al. JRC Technical Reports: Global Integrated Flood Map. JRC80255;; Publications Office of the European Union: Luxembourg, 2013.
[24]  Aster GDEM V2. Available online: https://lpdaac.usgs.gov/get_data(accessed on 8 April 2013).
[25]  J?hne, B.; Scharr, H.; K?rkel, S. Principles of Filter Design. In Handbook of Computer Vision and Applications; Academic Press: London, UK, 1999.
[26]  Sakamoto, T.; Nguyen, N.V.; Kotera, A.; Ohno, H.; Ishitsuka, N.; Yokozawa, M. Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong Delta from MODIS time-series imagery. Remote Sens. Environ 2007, 109, 366–374.
[27]  Islam, A.S.; Bala, S.K.; Haque, M.A. Flood inundation map of Bangladesh using MODIS time-series images. J. Flood Risk Manag 2010, 3, 210–222.
[28]  Yan, Y.-E.; Ouyang, Z.-T.; Guo, H.-Q.; Jin, S.-S.; Zhao, B. Detecting the spatiotemporal changes of tidal flood in the estuarine wetland by using MODIS time series data. J. Hydrol 2010, 384, 156–163.
[29]  Huete, A.R.; Liu, H.Q.; Batchily, K.; van Leeuwen, W. A comparison of vegetation indices global set of TM images for EOS-MODIS. Remote Sens. Environ 1997, 59, 440–451.
[30]  Huete, A.R.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ 2002, 83, 195–213.
[31]  Zhang, R.; Sun, D.; Li, S.; Yu, Y. A stepwise cloud shadow detection approach combining geometry determination and SVM classification for MODIS data. Int. J. Remote Sens 2013, 34, 211–226.
[32]  Li, S.; Sun, D.; Yu, Y. Automatic cloud-shadow removal from flood/standing water maps using MSG/SEVIRI imagery. Int. J. Remote Sens 2013, 34, 5487–5502.
[33]  Luo, Y.; Trishchenko, A.P.; Khlopenkov, K.V. Developing clear-sky, cloud and cloud shadow mask for producing clear-sky composites at 250-meter spatial resolution for the seven MODIS land bands over Canada and North America. Remote Sens. Environ 2008, 112, 4167–4185.
[34]  Simpson, J.J.; Jin, Z.H.; Stitt, J.R. Cloud shadow detection under arbitrary viewing and illumination conditions. IEEE Trans. Geosci. Remote Sens 2000, 38, 972–976.
[35]  Hutchinson, K.D.; Mahoney, R.L.; Vermote, E.F.; Kopp, T.J.; Jackson, J.M.; Sei, A.; Iisager, B.D. A geometry-based approach to identifying cloud shadows in the VIIRS cloud mask algorithm for NPOESS. J. Atmos. Ocean. Technol 2009, 26, 1388–1397.
[36]  Kuenzer, C.; Guo, H.; Schlegel, I.; Tuan, V.Q.; Li, X.; Dech, S. Varying scale and capability of envisat ASAR-WSM, TerraSAR-X Scansar and TerraSAR-X Stripmap data to assess urban flood situations: A case study of the Mekong delta in Can Tho province. Remote Sens. 2013, 5.
[37]  Infoterra. Radiometric Calibration of TerraSAR-X Data; Infoterra GmbH: Friedrichshafen, Germany, 2008.
[38]  SWBD. Shuttle Radar Topography Mission Water Body Data Set, 2005. Available online: http://dds.cr.usgs.gov/srtm/version2_1/SWBD/ (accessed on 28 August 2013).
[39]  Kittler, J.; Illingworth, J. Minimum error thresholding. Pattern Recognit 1986, 19, 41–47.
[40]  Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull 1979, 24, 43–69.
[41]  Rennó, C.D.; Nobre, A.D.; Cuartas, L.A.; Soares, J.V.; Hodnett, M.G.; Tomasella, J.; Waterloo, M.J. HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia. Remote Sens. Environ 2008, 112, 3469–3481.
[42]  Wendleder, A.; Wessel, B.; Roth, A.; Breunig, M.; Martin, K.; Wagenbrenner, S. TanDEM-X water indication mask: Generation and first evaluation results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2013, 6, 171–179.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133