全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Model-Based Biomass Estimation of a Hemi-Boreal Forest from Multitemporal TanDEM-X Acquisitions

DOI: 10.3390/rs5115574

Keywords: TanDEM-X, InSAR, forestry, boreal, biomass estimation, model-based, allometry

Full-Text   Cite this paper   Add to My Lib

Abstract:

Above-ground forest biomass is a significant variable in the terrestrial carbon budget, but is still estimated with relatively large uncertainty. Remote sensing methods can improve the characterization of the spatial distribution and estimation accuracy of biomass; in this respect, it is important to examine the potential offered by new sensors. To assess the contribution of the TanDEM-X mission, eighteen interferometric Synthetic Aperture Radar (SAR) image pairs acquired over the hemi-boreal test site of Remningstorp in Sweden were investigated. Three models were used for interpretation of TanDEM-X signatures and above-ground biomass retrieval: Interferometric Water Cloud Model (IWCM), Random Volume over Ground (RVoG) model, and a simple model based on penetration depth (PD). All use an allometric expression to relate above-ground biomass to forest height measured by TanDEM-X. The retrieval was assessed on 201 forest stands with a minimum size of 1 ha, and ranging from 6 to 267 Mg/ha (mean biomass of 105 Mg/ha) equally divided into a model training dataset and a validation test dataset. Biomass retrieved using the IWCM resulted in a Root Mean Square Error (RMSE) between 17% and 33%, depending on acquisition date and image acquisition geometry (angle of incidence, interferometric baseline, and orbit type). The RMSE in the case of the RVoG and the PD models were slightly higher. A multitemporal estimate of the above-ground biomass using all eighteen acquisitions resulted in an RMSE of 16% with R 2 = 0.93. These results prove the capability of TanDEM-X interferometric data to estimate forest aboveground biomass in the boreal zone.

References

[1]  Houghton, R.A. Aboveground forest biomass and the global carbon balance. Glob. Change Biol 2005, 11, 945–958.
[2]  Houghton, R.A.; Hall, F.; Goetz, S.J. Importance of biomass in the global carbon cycle. J. Geophys. Res.: Biogeosci 2009, 114, doi:10.1029/2009JG000935..
[3]  Ouchi, K. Recent trend and advance of synthetic aperture radar with selected topics. Remote Sens 2013, 5, 716–807.
[4]  Balzter, H.; Luckman, A.; Skinner, L.; Rowland, C.; Dawson, T. Observations of forest stand top height and mean height from interferometric SAR and LiDAR over a conifer plantation at Thetford Forest, UK. Int. J. Remote Sens 2007, 28, 1173–1197.
[5]  Hajnsek, I.; Kugler, F.; Lee, S.; Papathanassiou, K.P. Tropical-forest-parameter estimation by means of Pol-InSAR: The INDREX-II campaign. IEEE Trans. Geosci. Remote Sens 2009, 47, 481–493.
[6]  Praks, J.; Antropov, O.; Hallikainen, M.T. LIDAR-Aided SAR interferometry studies in boreal forest: Scattering phase center and extinction coefficient at X- and L-Band. IEEE Trans. Geosci. Remote Sens 2012, 50, 3831–3843.
[7]  Solberg, S.; Astrup, R.; Gobakken, T.; N?sset, E.; Weydahl, D.J. Estimating spruce and pine biomass with interferometric X-band SAR. Remote Sens. Environ 2010, 114, 2353–2360.
[8]  Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X: A satellite formation for high-resolution SAR interferometry. IEEE Trans. Geosci. Remote Sens 2007, 45, 3317–3341.
[9]  Weydahl, D.J.; Sagstuen, J.; Dick, ?.B.; R?nning, H. SRTM DEM accuracy assessment over vegetated areas in Norway. Int. J. Remote Sens 2007, 28, 3513–3527.
[10]  Neeff, T.; Dutra, L.V.; Santos, J.R.; Freitas, C.C.; Araújo, L.S. Tropical forest measurement by interferometric height modeling and P-band backscatter. For. Sci 2005, 51, 585–594.
[11]  Askne, J.; Dammert, P.; Ulander, L.M.H.; Smith, G. C-band repeat-pass interferometric SAR observations of forest. IEEE Trans. Geosci. Remote Sens 1997, 35, 25–35.
[12]  Askne, J.; Dammert, P.; Ulander, L.M.H.; Smith, G. Multi-temporal repeat pass SAR interferometry of boreal forests. IEEE Trans. Geosci. Remote Sens 2003, 41, 1540–1550.
[13]  Askne, J.; Santoro, M. Experiences in Boreal Forest Stem Volume Estimation from Multitemporal C-Band InSAR. In Recent Interferometry Applications in Topography and Astronomy; Padron, I., Ed.; InTech: Morn Hill, Winchester, UK, 2012; pp. 169–194.
[14]  Santoro, M.; Askne, J.; Smith, G.; Fransson, J.E.S. Stem volume retrieval in boreal forests from ERS-1/2 interferometry. Remote Sens. Environ 2002, 81, 19–35.
[15]  Cloude, S.R.; Papathanassiou, K.P. Polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens 1998, 36, 1551–1565.
[16]  Papathanassiou, K.P.; Cloude, S.R. Single-baseline polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens 2001, 39, 2352–2363.
[17]  Treuhaft, R.N.; Madsen, S.N.; Moghaddam, M.; van Zyl, J.J. Vegetation characteristics and underlaying topography from interferometric data. Radio Sci 1996, 31, 1449–1495.
[18]  Ulander, L.M.H.; Gustavsson, A.; Dubois-Fernandez, P.; Dupuis, X.; Fransson, J.E.S.; Holmgren, J.; Wallerman, J.; Eriksson, L.; Sandberg, G.; Soja, M. BIOSAR 2010–A SAR Campaign in Support to the BIOMASS Mission. Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011; pp. 1528–1531.
[19]  Ulander, L.M.H.; Gustavsson, A.; Flood, B.; Murdin, D.; Dubois-Fernandez, P.; Depuis, X.; Sandberg, G.; Soja, M.J.; Eriksson, L.E.B.; Fransson, J.E.S.; et al. BIOSAR 2010 Technical Assistance for the Development of Airborne SAR and Geophysical Measurements during the BioSAR 2010 Experiment; Final Report. ESA contract no. 4000102285/10/NL/JA/ef;; ESA: Noordwijk, The Netherlands, 2011; p. 212.
[20]  ESA. Report for Mission Selection: Biomass; European Space Agency: Noordwijk, The Netherlands, 2012.
[21]  Ahti, T.; H?met-Ahti, L.; Jalas, J. Vegetationzones and their sections innorthwestern Europe. Annales Botanici Fennici 1968, 5, 169–211.
[22]  Wikstr?m, P.; Edenius, L.; Elfving, B.; Eriksson, L.O.; L?m?s, T.; Sonesson, J.; ?hman, K.; Wallerman, J.; Waller, C.; Klinteb?ck, F. The Heureka forestry decision support system: An overview. Math. Comput. For. Nat.-Resour. Sci 2011, 3, 87–94.
[23]  Petersson, H. Biomassafunktioner f?r Tr?dfraktioner av Tall, Gran och Bj?rk i Sverige; Department of Forest Resource Management, Swedish University of Agricultural Sciences: Ume?, Sweden, 1999.
[24]  Marklund, L.G. Biomassafunktioner f?r Tall, Gran och Bj?rk i Sverige; Institutionen f?r Skogstaxering, Sveriges Lantbruksuniversitet: Ume?, Sweden, 1988.
[25]  N?slund, M. Funktioner och Tabeller f?r Kubering av St?ende Tr?d. Tall, Gran och Bj?rk i S?dra Sverige samt Hela Landet; Statens Skogsforskningsinstitut: Stockholm, Sweden, 1947.
[26]  N?sset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ 2002, 80, 88–99.
[27]  Sandberg, G.; Ulander, L.M.H.; Fransson, J.E.S.; Holmgren, J.; Toan, T.L. L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest. Remote Sens. Environ 2011, 115, 2874–2886.
[28]  Jalkanen, A.; M?kip??, R.; St?hl, G.; Lehtonen, A.; Petersson, H. Estimation of the biomass stock of trees in Sweden: comparison of biomass equations and age-dependent biomass expansion factors. Ann. For. Sci 2005, 62, 845–851.
[29]  Woodhouse, I.H. Predicting backscatter-biomass and height-biomass trends using a macroecology model. IEEE Trans. Geosci. Remote Sens 2006, 44, 871–877.
[30]  Balss, U.; Breit, H.; Duque, S.; Fritz, T.; Rossi, C. TanDEM-X Payload Ground Segment: CoSSC Generation and Interferometric Considerations. Available online: https://tandemx-science.dlr.de/pdfs/TD-PGS-TN-3129_CoSSCGenerationInterferometricConsiderations_1.0.pdf (accessed on 25 October 2013).
[31]  Huber, S.; Fiedler, H.; Krieger, G.; Zink, M. TanDEM-X Performance Optimization. Proceedings of International Radar Symposium, Cologne, Germany, 5–7 September 2007.
[32]  Soja, M.; Ulander, L. Digital Canopy Model Estimation from TanDEM-X Interferometry Using High-resolution Lidar DEM. Proceedings of 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2013, Melbourne, VIC, Australia, 22–26 July 2013.
[33]  Attema, E.P.W.; Ulaby, F.T. Vegetation modelled as a water cloud. Radio Sci 1978, 13, 357–364.
[34]  De Zan, F.; Krieger, G.; López-Dekker, P. On some spectral properties of TanDEM-X Interferograms over forested areas. IEEE Geosci. Remote Sens. Lett 2013, 10, 71–75.
[35]  Pulliainen, J.T.; Heiska, K.; Hyypp?, J.; Hallikainen, M.T. Backscattering properties of boreal forests at the C-and X-band. IEEE Trans. Geosci. Remote Sens 1994, 32, 1041–1050.
[36]  Fransson, J.E.S.; Smith, G.; Askne, J.; Olsson, H. Stem volume estimation in boreal forests using ERS-1/2 coherence and SPOT XS optical data. Int. J. Remote Sens 2001, 22, 2777–2791.
[37]  Santoro, M.; Shvidenko, A.; McCallum, I.; Askne, J.; Schmullius, C. Properties of ERS-1/2 coherence in the Siberian boreal forest and implications for stem volume retrieval. Remote Sens. Environ 2007, 106, 154–172.
[38]  Santoro, M.; Askne, J.; Dammert, P. Tree height retrieval from ERS interferometric phase in boreal forest. IEEE Trans. Geosci. Remote Sens 2005, 43, 207–217.
[39]  Mette, T.; Papathanassiou, K.P.; Hajnsek, I.; Zimmermann, R. Forest Biomass Estimation Using Polarimetric SAR Interferometry. Proceedings of Workshop on POLinSAR—Applications of SAR Polarimetry and Polarimetric Interferometry, Frascati, Italy, 14–16 January 2003.
[40]  Caicoya, A.T.; Kugler, F.; Hajnsek, I.; Papathanassiou, K. Boreal Forest Biomass Classification with TanDEM-X. Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012.
[41]  Santoro, M.; Beer, C.; Cartus, O.; Schmullius, C.; Shvidenko, A.; McCallum, I.; Wegmüller, U.; Wiesmann, A. Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements. Remote Sens. Environ 2011, 115, 490–507.
[42]  Soja, M.J.; Sandberg, G.; Ulander, L.M.H. Regression-based retrieval of boreal forest biomass in sloping terrain using P-band SAR backscatter intensity data. IEEE Trans. Geosci. Remote Sens 2013, 51, 2646–2665.
[43]  Folkesson, K.; Smith-Jonforsen, G.; Ulander, L.M.H. Validating backscatter models for CARABAS SAR images of coniferous forests. Can. J. Remote Sens 2008, 34, 480–495.
[44]  Solberg, S.; Astrup, R.; Breidenbach, J.; Nilsen, B.; Weydahl, D. Monitoring spruce volume and biomass with InSAR data from TanDEM-X. Remote Sens. Environ 2013, 139, 60–67.
[45]  Ulander, L.M.H.; Askne, J.I.H.; Eriksson, L.E.B.; Franssson, J.E.S.; Persson, H.; Soja, M. Effects of Tree Species and Season on Boreal Forest Biomass Estimates from TanDEM-X. Proceedings of 4th TanDEM-X Science Team Meeting, Oberpfaffenhofen, Germany, 12–14 June 2013; p. 15. Available online https://tandemx-science.dlr.de/pdfs/ScienceMeeting2013_OralPresentations/TDX_8_Forest_Applications/3_Ulander.pdf (accessed on 25 October 2013).
[46]  H?me, T.; Salli, A.; Lahti, K. Estimation of Carbon Storage in Boreal Forests Using Remote Sensing Data, Pilot Study. In The Finnish Programme on Climate Change, Progress Report; Kanninen, M., Anttila, P., Eds.; Publications of the Academy of Finland; VAPK Publishing: Helsinki, Finland, 1992; Volume 3/92, pp. 250–255.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133