全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Time-Space Variability of Chlorophyll-a and Associated Physical Variables within the Region off Central-Southern Chile

DOI: 10.3390/rs5115550

Keywords: satellite Chl-a, annual cycle, wind-driven upwelling, alongshore and across-shore differences, central-southern Chile

Full-Text   Cite this paper   Add to My Lib

Abstract:

Time-space fluctuations of chlorophyll-a (Chl-a) within the region off central-southern Chile (33–42°S), and their association with meteorological-oceanographic conditions, were analyzed using satellite time series data (2002–2012). The mean distribution of moderate values of Chl-a (~0.5 mg?m ?3) in the northern section (33–38°S) extended out to ~200 km of the coast whereas they were restricted to a narrower band in the southern section (38–42°S). Mean wind stress and wind stress curl were upwelling favorable for most part of the year in the northern section whereas upwelling-downwelling periods were distinct in the southern section. The dominant frequency of Chl-a variability in the coastal zone and the coastal transition zone was annual, as it was for the rest of the variables, except in a transitional band between these zones and where a semi-permanent jet is located. At the annual frequency, the alongshore distribution of coastal Chl-a presented strong discontinuities, with minimum values around upwelling centers (~37 and 40°S) and higher values (> 2 mg?m ?3) in between. Also at the annual frequency, correlation analyses suggest that Ekman transport and Ekman pumping might act synchronously to extend the offshore distribution of the highest Chl-a values during the spring-summer period whereas mesoscale activity appears to contribute to Chl-a increases in the coastal transition zone. Sea surface temperature does not appear to be associated with the annual cycle of Chl-a in the coastal zone and in the coastal transition zone it might be linked to Chl-a variability through the effects of internal waves.

References

[1]  Hill, A.E.; Hickey, B.M.; Shillington, F.A.; Strub, P.T.; Brink, K.H.; Barton, E.D.; Thomas, A.C. Eastern Ocean Boundaries. In The Sea; Robinson, A.R., Brink, K.H., Eds.; John Wiley and Sons: New York, NY, USA, 1998; Volume 11, pp. 29–67.
[2]  Mackas, D.L.; Strub, P.T.; Thomas, A.; Montecino, V. Eastern Regional Ocean Boundaries-Pan Regional Overview. In The Global Coastal Ocean: Interdisciplinary Regional Studies and Syntheses—Pan-Regional Syntheses and the Coasts of North and South America and Asia, the Sea; Robinson, A.R., Brink, K., Eds.; Harvard University Press: Cambridge, MA, USA, 2006; Volume 14, pp. 21–60.
[3]  Chavez, F.P.; Messié, M. A comparison of eastern boundary upwelling systems. Prog. Oceanogr 2009, 83, 80–96.
[4]  Thomas, A.C.; Strub, P.T.; Weatherbee, R.A.; James, C. Satellite views of Pacific chlorophyll variability: Comparisons to physical variability, local versus nonlocal influences and links to climate indices. Deep Sea Res. Part II 2012, 77–80, 99–116.
[5]  Thomas, A.C.; Carr, M.E.; Strub, P.T. Chlorophyll variability in eastern boundary currents. Geophys. Res. Lett 2001, 28, 3421–3424.
[6]  Yuras, G.; Ulloa, O.; Hormazabal, S. On the annual cycle of coastal and open ocean satellite chlorophyll off Chile (18–40°S). Geophys. Res. Lett 2005, doi:10.1029/2005GL023946..
[7]  Lauthuilière, C.; Echevin, V.; Lévy, M. Seasonal and intraseasonal surface chlorophyll-a variability along the northwest African coast. J. Geophys. Res 2008, doi:10.1029/2007JC004433..
[8]  Echevin, V.; Aumont, O.; Ledesma, J.; Flores, G. The seasonal cycle of surface chlorophyll in the Peruvian upwelling system: A modelling study. Prog. Oceanogr 2008, 79, 167–176.
[9]  Checkley, D.M.; Barth, J.A. Patterns and processes in the California Current System. Prog. Oceanogr 2009, 83, 49–64.
[10]  Correa-Ramirez, M.A.; Hormazabal, S.; Morales, C.E. Spatial patterns of annual and interannual surface chlorophyll-a variability in the Peru–Chile Current System. Prog. Oceanogr 2012, 92, 8–17.
[11]  Lachkar, Z.; Gruber, N.A. Comparative study of biological production in eastern boundary upwelling systems using an artificial neural network. Biogeosciences 2012, 9, 293–308.
[12]  Carr, M.E.; Kearns, D.J. Production regimes in four eastern boundary current systems. Deep Sea Res. Part II 2003, 50, 3199–3221.
[13]  Henson, S.A.; Thomas, A.C. Phytoplankton scales of variability in the California Current System: Interannual and cross-shelf variability. J. Geophys. Res 2007, 112, doi:10.1029/2006JC004039..
[14]  Kudela, R.; Banas, N.; Barth, J.; Frame, E.; Jay, D.; Largier, J.; Lessard, E.; Peterson, T.; VanderWoude, A. New insights into the controls and mechanisms of plankton productivity in coastal upwelling waters of the northern California Current System. Oceanography 2008, 21, 40–54.
[15]  Venegas, R.M.; Strub, P.T.; Beier, E.; Letelier, R.; Thomas, A.C.; Cowles, T.; James, C.; Soto-Mardones, L.; Cabrera, C. Satellite-derived variability in chlorophyll, wind stress, sea surface height, and temperature in the northern California Current System. J. Geophys. Res 2008, doi:10.1029/2007JC004481..
[16]  Weeks, S.J.; Barlow, R.; Roy, C.; Shillington, F.A. Remotely sensed variability of temperature and chlorophyll in the southern Benguela: Upwelling frequency and phytoplankton response. Afr. J. Mar. Sci 2006, 28, 493–509.
[17]  Thomas, A.C.; Brickley, P.; Weatherbee, R. Interannual variability in chlorophyll concentrations in the Humboldt and California Current Systems. Prog. Oceanogr 2009, 83, 386–392.
[18]  Tweddle, J.F.; Strutton, P.G.; Foley, D.G.; O’Higgins, L.; Wood, A.M.; Scott, B.; Everroad, R.C.; Peterson, W.T.; Cannon, D.; Hunter, M.; et al. Relationships among upwelling, phytoplankton blooms, and phycotoxins in coastal Oregon shellfish. Mar. Ecol. Prog. Ser 2010, 405, 131–145.
[19]  Espinosa-Carreon, T.L.; Strub, P.T.; Beier, E.; Ocampo-Torres, F.; Gaxiola-Castro, G. Seasonal and interannual variability of satellite-derived chlorophyll pigment, surface height, and temperature off Baja California. J. Geophys. Res 2004, 109, doi:10.1029/2003JC002105..
[20]  Lachkar, Z.; Gruber, N. What controls biological production in coastal upwelling systems? Insights from a comparative modeling study. Biogeosciences 2011, 8, 2961–2976.
[21]  Thomas, A.C.; Huang, F.; Strub, P.T.; James, C. Comparison of the seasonal and interannual variability of phytoplankton pigment concentrations in the Peru and California Current Systems. J. Geophys. Res 1994, 99, 7355–7370.
[22]  Letelier, J.; Pizarro, O.; Nu?ez, S. Seasonal variability of coastal upwelling and the upwelling front off central Chile. J. Geophys. Res 2009, doi:10.1029/2008JC005171..
[23]  Hormazabal, S.; Shaffer, G.; Leth, O. The coastal transition zone off Chile. J. Geophys. Res 2004, doi:10.1029/2003JC001956..
[24]  Sobarzo, M.; Bravo, L.; Donoso, L.; Garcés-Vargas, J.; Schneider, W. Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile. Prog. Oceanogr 2007, 75, 363–382.
[25]  Silva, N.; Rojas, N.; Fedele, A. Water masses in the Humboldt Current System: Properties, distribution, and the nitrate deficit as a chemical water mass tracer for Equatorial Subsurface Water off Chile. Deep Sea Res. Part II 2009, 56, 1004–1020.
[26]  Strub, P.; Mesías, J.; Montecino, V.; Ruttlant, J. Coastal Ocean Circulation off Western South America. In The Sea; Robinson, A., Brink, K., Eds.; John Wiley and Sons, Inc: New York, NY, USA, 1998; Volume 11, pp. 273–313.
[27]  Bakun, A.; Nelson, C.S. The seasonal cycle of wind stress curl in sub-tropical boundary current regions. J. Phys. Oceanogr 1991, 21, 1815–1834.
[28]  Fuenzalida, R.; Schneider, W.; Garcés-Vargas, J.; Bravo, L. Satellite altimetry data reveal jet-like dynamics of the Humboldt Current. J. Geophys. Res 2008, doi:10.1029/2007JC004684..
[29]  Aguirre, C.; Pizarro, O.; Strub, P.T.; Garreaud, R.; Barth, J.A. Seasonal dynamics of the near-surface alongshore flow off central Chile. J. Geophys. Res 2012, doi:10.1029/2011JC007379..
[30]  Anabalón, V.; Morales, C.E.; Escribano, H.R.; Varas, M.A. The contribution of nano- and micro-planktonic assemblages in the surface layer (0–30 m) under different hydrographic conditions in the upwelling area off Concepción, central Chile. Prog. Oceanogr 2007, 75, 396–414.
[31]  Morales, C.E.; González, H.E.; Hormazabal, S.E.; Yuras, G.; Letelier, J.; Castro, L.R. The distribution of chlorophyll-a and dominant planktonic components in the coastal transition zone off Concepción, central Chile, during different oceanographic conditions. Prog. Oceanogr 2007, 75, 452–469.
[32]  González, H.E.; Menschel, E.; Aparicio, C.; Barría, C. Spatial and temporal variability of microplankton and detritus, and their export to the shelf sediments in the upwelling area off Concepción, Chile (~36°S), during 2002–2005. Prog. Oceanogr 2007, 75, 435–451.
[33]  B?ttjer, D.; Morales, C.E. Nanoplanktonic assemblages in the upwelling area off Concepción (36°S), central Chile: Abundance, biomass, and grazing potential during the annual cycle. Prog. Oceanogr 2007, 75, 415–434.
[34]  Morales, C.E.; Anabalón, V.S. Phytoplankton biomass and microbial abundances during the spring upwelling season in the coastal area off Concepción, central-southern Chile: Variability around a time series station. Prog. Oceanogr 2012, 83, 80–96.
[35]  Alvera-Azcárate, A.; Barth, A.; Beckers, J.M.; Weisberg, R.H. Multivariate reconstruction of missing data in sea surface temperature, chlorophyll, and wind satellite fields. J. Geophys. Res 2007, 112, doi:10.1029/2007JC004243..
[36]  Stuart, V.; Ulloa, O.; Alarcon, G.; Sathyendranath, S.; Major, H.; Head, E.J.; Platt, T. Bio-optical characteristics of phytoplankton populations in the upwelling system off the coast of Chile. Rev. Chil. Hist. Nat 2004, 77, 87–105.
[37]  Mann, M.E.; Park, J. Oscillatory spatiotemporal signal detection in climate studies: A multiple-taper spectral domain approach. Adv. Geophys 1999, 41, 1–131.
[38]  Correa-Ramirez, M.A.; Hormazabal, S. MultiTaper Method-Singular Value Decomposition (MTM-SVD): Variabilidad espacio-frecuencia de las fluctuaciones del nivel del mar en el Pacífico suroriental. Lat. Am. J. Aquat. Res 2012, 40, 1039–1060.
[39]  Atkinson, L.P.; Valle-Levinson, A.; Figueroa, D.; de Pol-Holz, R.; Gallardo, V.A.; Schneider, W.; Blanco, J.L.; Schmidt, M. Oceanographic observations in Chilean coastal waters between Valdivia and Concepcion. J. Geophys. Res. 2002, doi:10.1029/2001JC000991..
[40]  Leth, O.; Middleton, J.F. A mechanism for enhanced upwelling off central Chile: Eddy advection. J. Geophys. Res 2004, doi:10.1029/2003JC002129..
[41]  Morales, C.E.; Hormazabal, S.; Correa-Ramirez, M.; Pizarro, O.; Silva, N.; Fernandez, C.; Anabalón, V.; Torreblanca, M.L. Mesoscale variability and nutrient–phytoplankton distributions off central-southern Chile during the upwelling season: The influence of mesoscale eddies. Prog. Oceanogr 2012, 104, 17–29.
[42]  Hormazabal, S.; Combes, V.; Morales, C.E.; Correa-Ramirez, M.; di Lorenzo, E; Nu?ez, S. Intrathermocline eddies in the coastal transition zone off central Chile (31–41°S). J. Geophys. Res 2013, 118, 1–11.
[43]  Letelier, J. Surgencia y Estructuras de Mesoescala Frente a Chile (18–42°S)Ph.D. Thesis, Universidad de Concepción, Biobío, Chile. 2010.
[44]  Gomez, F.; Montecinos, A.; Hormazabal, S.; Cubillos, L.A.; Correa-Ramirez, M.A.; Chavez, F.P. Impact of spring upwelling variability off southern-central Chile on common sardine (Strangomera bentincki) recruitment. Fish. Oceanogr 2012, 21, 405–414.
[45]  Garreaud, R.; Munoz, R. The low-level jet off the subtropical west coast of South America: Structure and variability. Mon. Wea. Rev 2005, 133, 2246–2261.
[46]  Legaard, K.R.; Thomas, A.C. Spatial patterns in seasonal and interannual variability of chlorophyll and sea surface temperature in the California Current. J. Geophys. Res 2006, doi:10.1029/2005JC003282..
[47]  Renault, L.; Dewitte, B.; Falvey, M.; Garreaud, R.; Echevin, V.; Bonjean, F. Impact of atmospheric coastal jet off central Chile on sea surface temperature from satellite observations (2000–2007). J. Geophys. Res 2009, doi:10.1029/2008JC005083..
[48]  Putrasahan, D.A.; Millar, A.J.; Seo, H. Regional coupled ocean-atmosphere downscaling in the Southeast Pacific: Impacts on upwelling, mesoscale air-sea fluxes and ocean eddies. Ocean Dyn 2013, 63, 463–488.
[49]  Macías, D.; Franks, P.J.S.; Ohman, M.D.; Landry, M.R. Modeling the effects of coastal wind- and wind-stress curl-driven upwelling on plankton dynamics in the Southern Califonia Current System. J. Mar. Syst 2012, 94, 107–119.
[50]  Albert, A.; Echevin, V.; Lévy, M.; Aumont, O. Impact of nearshore wind stress curl on coastal circulation and primary productivity in the Peru upwelling system. J. Geophys. Res 2010, doi:10.1029/2010JC006569..
[51]  Cipollini, P.; Cromwell, D.; Challenor, P.G.; Raffaglio, S. Rossby waves detected in global ocean colour data. Geophys. Res. Lett. 2001, doi:10.1029/1999GL011231..

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133