全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Detection of Forest Clear-Cuts with Shuttle Radar Topography Mission (SRTM) and Tandem-X InSAR Data

DOI: 10.3390/rs5115449

Keywords: forest monitoring, clear-cut, digital surface model, Tandem-X, 3D, InSAR

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this study was to determine whether forest clear-cuts during 2000–2011 could be detected as a decrease in surface height by combining Digital Surface Models (DSMs) from the Shuttle Radar Topography Mission (SRTM) and Tandem-X, and to evaluate the performance of this method using SRTM X- and C-band data as references representing the heights before logging. The study area was located in a Norway spruce-dominated forest estate in southeastern Norway. We interpolated 11-year DSM changes into a 10 m × 10 m raster, and averaged these changes per forest stand. Based on threshold values for DSM decreases we classified the pixels and stands into the categories “clear-cut” and “not clear-cut”, and compared this to a complete record of logged stands during 2000–2011. The classification accuracy was moderate or fairly good. A correct detection was achieved for 59%–67% of the clear-cut stands. Omission errors were most common, occurring in 33%–42% of the stands. Commission errors were found in 13%–21% of the clear-cut stands. The results obtained for X-band SRTM were only marginally better than for C-band. In conclusion, the combination of SRTM and Tandem-X has the potential of providing near global data sets for the recent 12 years’ logging, which should be particularly valuable for deforestation mapping.

References

[1]  Kuntz, S. Potential of spaceborne SAR for monitoring the tropical environments. Trop. Ecol 2010, 51, 3–10.
[2]  Lynch, J.; Maslin, M.; Balzter, H.; Sweeting, M. Choose satellites to monitor deforestation. Nature 2013, 496, 293–294.
[3]  Patenaude, G.; Milne, R.; Dawson, T.P. Synthesis of remote sensing approaches for forest carbon estimation: Reporting to the Kyoto Protocol. Environ. Sci. Policy 2005, 8, 161–178.
[4]  Frolking, S.; Palace, M.W.; Clark, D.B.; Chambers, J.Q.; Shugart, H.H.; Hurtt, G.C. Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. J. Geophys. Res.: Biogeosci. 2009, 114, doi:10.1029/2008JG000911.
[5]  Kuntz, S.; von Poncet, F.; Baldauf, T.; Plugge, D.; Kenter, B.; K?hl, M. A Multi-Stage Inventory Scheme for REDD Inventories in Tropical Countries. Proceedings of the 34th ISRSE Conference, Sydney, NSW, Australia, 10–15 April 2011.
[6]  Global Forest Resources Assessments. 2005. Available online: http://www.fao.org/docrep/008/a0400e/a0400e00.htm (accessed on 1 July 2013).
[7]  Willén, E.; Rosengren, M. Satellitdata f?r Skoglig Planering; Metria: Stockholm, Sweden, 2003.
[8]  Santoro, M.; Pantze, A.; Fransson, J.E.S.; Dahlgren, J.; Persson, A. Nation-wide clear-cut mapping in sweden using ALOS PALSAR strip images. Remote Sens 2012, 4, 1693–1715.
[9]  Askne, J.I.H.; Dammert, P.B.G.; Ulander, L.M.H.; Smith, G. C-band repeat-pass interferometric SAR observations of the forest. IEEE Trans. Geosci. Remote Sens 1997, 35, 25–35.
[10]  Solberg, S.; Astrup, R.; Lyytikainen-Saarenmaa, P.; Kantola, T.; Holopainen, M.; Weydahl, D.J.; Kaartinen, H. Testing TerraSAR-X for Forest Disturbance Mapping. Proceedings of the 4th TerraSAR-X Science Team Meeting, Oberpfaffenhofen, Germany, 14–16 February 2011.
[11]  Hansen, M.C.; Shimabukuro, Y.E.; Potapov, P.; Pittman, K. Comparing annual MODIS and PRODES forest cover change data for advancing monitoring of Brazilian forest cover. Remote Sens. Environ 2008, 112, 3784–3793.
[12]  Yu, X.W.; Hyyppa, J.; Kaartinen, H.; Maltamo, M. Automatic detection of harvested trees and determination of forest growth using airborne laser scanning. Remote Sens. Environ 2004, 90, 451–462.
[13]  Dwyer, E.; Pasquali, P.; Holecz, F.; Arino, O. Mapping forest damage caused by the 1999 Lothar Storm in Jura (France), using SAR Interferometry. ESA Earth Observ. Q 1999, 65, 28–29.
[14]  Olander, L.P.; Gibbs, H.K.; Steininger, M.; Swenson, J.J.; Murray, B.C. Reference scenarios for deforestation and forest degradation in support of REDD: A review of data and methods. Environ. Res. Lett. 2008, 3, doi:10.1088/1748-9326/3/2/025011.
[15]  Rosenvald, R.; Lohmus, A. For what, when, and where is green-tree retention better than clear-cutting? A review of the biodiversity aspects. For. Ecol. Manag 2008, 255, 1–15.
[16]  Baker, S.C.; Read, S.M. Variable retention silviculture in Tasmania’s wet forests: Ecological rationale, adaptive management and synthesis of biodiversity benefits. Aust. For 2011, 74, 218–232.
[17]  Englhart, S.; Jubanski, J.; Siegert, F. Quantifying dynamics in tropical peat swamp forest biomass with multi-temporal LiDAR datasets. Remote Sens 2013, 5, 2368–2388.
[18]  Boutet, J.C.; Weishampel, J.F. Spatial pattern analysis of pre- and post-hurricane forest canopy structure in North Carolina, USA. Landsc. Ecol 2003, 18, 553–559.
[19]  Vastaranta, M.; Korpela, I.; Uotila, A.; Hovi, A.; Holopainen, M. Mapping of snow-damaged trees based on bitemporal airborne LiDAR data. Eur. J. For. Res 2012, 131, 1217–1228.
[20]  Solberg, S.; Naesset, E.; Hanssen, K.H.; Christiansen, E. Mapping defoliation during a severe insect attack on Scots pine using airborne laser scanning. Remote Sens. Environ 2006, 102, 364–376.
[21]  Nystrom, M.; Holmgren, J.; Olsson, H. Change detection of mountain birch using multi-temporal ALS point clouds. Remote Sens. Lett 2013, 4, 190–199.
[22]  Dolan, K.A.; Hurtt, G.C.; Chambers, J.Q.; Dubayah, R.O.; Frolking, S.; Masek, J.G. Using ICESat’s Geoscience Laser Altimeter System (GLAS) to assess large-scale forest disturbance caused by hurricane Katrina. Remote Sens. Environ 2011, 115, 86–96.
[23]  Deutscher, J.; Perko, R.; Gutjahr, K.; Hirschmugl, M.; Schardt, M. Mapping tropical rainforest canopy disturbances in 3D by COSMO-SkyMed spotlight InSAR-stereo data to detect areas of forest degradation. Remote Sens 2013, 5, 648–663.
[24]  Balzter, H. Forest mapping and monitoring with interferometric synthetic aperture radar (InSAR). Prog. Phys. Geogr 2001, 25, 159–177.
[25]  Rombach, M.; Moreira, J. Description and Applications of the Multipolarized Dual Band OrbiSAR-1 InSAR Sensor. Proceedings of the IEEE International Radar Conference, Adelaide, SA, Australia, 3–5 September 2003.
[26]  Neeff, T.; Dutra, L.V.; dos Santos, J.R.; Freitas, C.D.; Araujo, L.S. Tropical forest measurement by interferometric height modeling and P-band radar backscatter. For. Sci 2005, 51, 585–594.
[27]  Balzter, H.; Rowland, C.S.; Saich, P. Forest canopy height and carbon estimation at Monks Wood National Nature Reserve, UK, using dual-wavelength SAR interferometry. Remote Sens. Environ 2007, 108, 224–239.
[28]  Gama, F.F.; dos Santos, J.R.; Mura, J.C. Eucalyptus biomass and volume estimation using interferometric and polarimetric SAR data. Remote Sens 2010, 2, 939–956.
[29]  Solberg, S.; Astrup, R.; Gobakken, T.; N?sset, E.; Weydahl, D.J. Estimating spruce and pine biomass with interferometric X-band SAR. Remote Sens. Environ 2010, 114, 2353–2360.
[30]  Solberg, S.; Astrup, R.; Bollandsas, O.M.; N?sset, E.; Weydahl, D.J. Deriving forest monitoring variables from X-band InSAR SRTM height. Can. J. Remote Sens 2010, 36, 68–79.
[31]  Solberg, S.; Astrup, R.; Breidenbach, J.; Nilsen, B.; Weydahl, D. Monitoring spruce volume and biomass with InSAR data from TanDEM-X. Remote Sens. Environ 2013, 139, 60–67.
[32]  Weydahl, D.J.; Sagstuen, J.; Dick, O.B.; Ronning, H. SRTM DEM accuracy assessment over vegetated areas in Norway. Int. J. Remote Sens 2007, 28, 3513–3527.
[33]  Chen, Y.; Shi, P.; Deng, L.; Li, J. Generation of a top-of-canopy Digital Elevation Model (DEM) in tropical rain forest regions using radargrammetry. Int. J. Remote Sens 2007, 28, 4345–4349.
[34]  Perko, R.; Raggam, H.; Deutscher, J.; Gutjahr, K.; Schardt, M. Forest assessment using high resolution SAR data in X-band. Remote Sens 2011, 3, 792–815.
[35]  Karjalainen, M.; Kankare, V.; Vastaranta, M.; Holopainen, M.; Hyyppa, J. Prediction of plot-level forest variables using TerraSAR-X stereo SAR data. Remote Sens. Environ 2012, 117, 338–347.
[36]  Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens 2003, 57, 241–262.
[37]  The CGIAR Consortium for Spatial Information (CGIAR-CSI). SRTM 90 m Digital Elevation Data. Available online: http://srtm.csi.cgiar.org/index.asp (accessed on 20 July 2013).
[38]  Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett 1998, 25, 4035–4038.
[39]  Way, J.; Paris, J.; Kasischke, E.; Slaughter, C.; Viereck, L.; Christensen, N.; Dobson, M.C.; Ulaby, F.; Richards, J.; Milne, A.; et al. The effect of changing environmental-conditions on microwave signatures of forest ecosystems: Preliminary-results of the March 1988 Alaskan aircraft SAR experiment. Int. J. Remote Sens 1990, 11, 1119–1144.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133