Extracting 3D tree models based on terrestrial laser scanning (TLS) point clouds is a challenging task as trees are complex objects. Current TLS devices acquire high-density data that allow a detailed reconstruction of the tree topology. However, in dense forests a fully automatic reconstruction of trees is often limited by occlusion, wind influences and co-registration issues. In this paper, a semi-automatic method for extracting branching and stem structure based on equirectangular projections (range and intensity maps) is presented. The digitization of branches and stems is based on 2D maps, which enables simple navigation and raster processing. The modeling is performed for each viewpoint individually instead of using a registered point cloud. Previously reconstructed 2D-skeletons are transformed between the maps. Therefore, wind influences, orientation imperfections of scans and data gaps can be overcome. The method is applied to a TLS dataset acquired in a forest in Germany. In total 34 scans were carried out within a managed forest to measure approximately 90 spruce trees with minimal occlusions. The?results demonstrate the feasibility of the presented approach to extract tree models with a high completeness and correctness and provide an excellent input for further modeling applications.
References
[1]
ESA European Space Agency (ESA). Available online: http://www.esa.int/ESA (accessed on 19 November 2012).
[2]
ESA European Space Agency (ESA)—Living Planet Programme—Gmes. Available online: http://www.esa.int/esaLP/SEMM4T4KXMF_LPgmes_0.html (accessed on 20 November 2012).
[3]
ESA 3D Vegetation Lab. Available online: http://due.esrin.esa.int/stse/projects/stse_project.php?id=139 (accessed on 20 November 2012).
[4]
Lovell, J.L.; Jupp, D.L.B.; Newnham, G.J.; Culvenor, D.S. Measuring tree stem diameters using intensity profiles from ground-based scanning lidar from a fixed viewpoint. ISPRS J. Photogramm. Remote Sens 2011, 66, 46–55.
[5]
Eysn, L.; Ressl, C.; Grafl, A.; Hollaus, M.; Mücke, W.; Morsdorf, F.; Pfeifer, N. Extraction of 3D Tree Models Based on Equirectangular Projections of Terrestrial Laser Scanning Data. Proceedings of SilviLaser 2012, Vancouver, BC, Canada, 16–19 September 2012.
[6]
Biliouris, D.; van der Zande, D.; Verstraeten, W.; Muys, B.; Coppin, P. Assessing the impact of canopy structure simplification in common multilayer models on irradiance absorption estimates of measured and virtually created Fagus sylvatica (L.) stands. Remote Sens 2009, 1, 1009–1027.
[7]
Xinlian, L.; Litkey, P.; Hyyppa, J.; Kaartinen, H.; Vastaranta, M.; Holopainen, M. Automatic stem mapping using single-scan terrestrial laser scanning. IEEE Trans. Geosci. Remote Sens 2012, 50, 661–670.
[8]
Hopkinson, C.; Chasmer, L.; Young-Pow, C.; Treitz, P. Assessing forest metrics with a ground-based scanning lidar. Can. J. For. Res 2004, 34, 573–583.
[9]
Maas, H.G.; Bienert, A.; Scheller, S.; Keane, E. Automatic forest inventory parameter determination from terrestrial laser scanner data. Int. J. Remote Sens 2008, 29, 1579–1593.
[10]
Tansey, K.; Selmes, N.; Anstee, A.; Tate, N.J.; Denniss, A. Estimating tree and stand variables in a corsican pine woodland from terrestrial laser scanner data. Int. J. Remote Sens 2009, 30, 5195–5209.
[11]
Bienert, A.; Scheller, S.; Keane, E.; Mohan, F.; Nugent, C. Tree Detection and Diameter Estimations by Analysis of Forest Terrestrial Laserscanner Point Clouds. Proceedings of ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, Finland, 12–14 September 2007; pp. 50–55.
[12]
Dassot, M.; Colin, A.; Santenoise, P.; Fournier, M.; Constant, T. Terrestrial laser scanning for measuring the solid wood volume, including branches, of adult standing trees in the forest environment. Comput. Electron. Agric 2012, 89, 86–93.
[13]
Schilling, A.; Schmidt, A.; Maas, H.G. Tree topology representation from TLS point clouds using depth-first search in voxel space. Photogramm. Eng. Remote Sens 2012, 78, 383–392.
[14]
Delagrange, S.; Rochon, P. Reconstruction and analysis of a deciduous sapling using digital photographs or terrestrial-lidar technology. Ann. Bot 2011, 108, 991–1000.
[15]
Vonderach, C.; V?gtle, T.; Adler, P.; Norra, S. Terrestrial laser scanning for estimating urban tree volume and carbon content. Int. J. Remote Sens 2012, 33, 6652–6667.
[16]
Hosoi, F.; Nakai, Y.; Omasa, K. 3-D voxel-based solid modeling of a broad-leaved tree for accurate volume estimation using portable scanning lidar. ISPRS J. Photogramm. Remote Sens 2013, 82, 41–48.
[17]
Bucksch, A. Revealing the Skeleton from Imperfect Point CloudsPh.D. Thesis. Delft University of Technology, Delft, The Netherlands, 2011.
Pfeifer, N.; Gorte, B.; Winterhalder, D. Automatic Reconstruction of Single Trees from Terrestrial Laser Scanner Data. Proceedings of the XXth ISPRS Congress: Geo-Imagery Bridging Continents, Istanbul, Turkey, 12–23 July 2004; pp. 114–119.
[20]
Thies, M.; Pfeifer, N.; Winterhalder, D.; Gorte, B.G.H. Three-dimensional reconstruction of stems for assessment of taper, sweep and lean based on laser scanning of standing trees. Scand. J. For. Res 2004, 19, 571–581.
[21]
Gorte, B.; Pfeifer, N. Structuring Laser-Scanned Trees Using 3D Mathematical Morphology. Proceedings of the XXth ISPRS Congress: GeoImagery Bridging Continents, Istanbul, Turkey, 12–23 July 2004; pp. 929–933.
[22]
Palágyi, K.; Tschirren, J.; Sonka, M. Quantitative Analysis of Intrathoracic Airway Trees: Methods and Validation. In Information Processing in Medical Imaging; Taylor, C., Noble, J.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2732, pp. 222–233.
[23]
C?té, J.-F.; Fournier, R.A.; Egli, R. An architectural model of trees to estimate forest structural attributes using terrestrial lidar. Environ. Model. Softw 2011, 26, 761–777.
[24]
Verroust, A.; Lazarus, F. Extracting Skeletal Curves from 3D Scattered Data. Proceedings of International Conference on Shape Modeling and Applications (Shape Modeling International ’99), Aizu, Japan, 1–4 March 1999; pp. 194–201.
[25]
Runions, A.; Lane, B.; Prusinkiewicz, P. Modeling Trees with a Space Colonization Algorithm. Proceedings of Eurographics Workshop on Natural Phenomena, Prague, Czech Republik, 4 September 2007.
[26]
Palubicki, W.; Horel, K.; Longay, S.; Runions, A.; Lane, B.; Mech, R.; Prusinkiewicz, P. Self-organizing tree models for image synthesis. ACM Trans. Graph 2009, 28, 1–10.
[27]
Cheng, Z.; Zhang, X.; Fourcaud, T. Tree Skeleton Extraction from a Single Range Image. Proceedings of Second International Symposium on Plant Growth Modeling and Applications (PMA ’06), Beijing, China, 13–17 November 2006; pp. 274–281.
[28]
Raumonen, P.; Kaasalainen, M.; ?kerblom, M.; Kaasalainen, S.; Kaartinen, H.; Vastaranta, M.; Holopainen, M.; Disney, M.; Lewis, P. Fast automatic precision tree models from terrestrial laser scanner data. Remote Sens 2013, 5, 491–520.
[29]
Dassot, M.; Constant, T.; Fournier, M. The use of terrestrial lidar technology in forest science: Application fields, benefits and challenges. Ann. For. Sci 2011, 68, 959–974.
[30]
Bucksch, A.; Khoshelham, K. Localized registration of point clouds of botanic trees. IEEE Geosci. Remote Sens. Lett 2013, 10, 631–635.
[31]
Zoller+Fr?hlich Technical Data z+f IMAGER 5006i. Available online: http://sluzby.geodis.cz/uploads/dokumenty/laserove_skenovani/Datenblatt_IMAGER5006i_E.pdf (accessed on 22 November 2012).
[32]
Brinker, R.C.; Minnick, R. The Surveying Handbook; Springer-Science+Business Media, B.V.: Dordrecht, The Netherlands, 1995; p. 971.
[33]
ESRI Understanding World Files. Available online: http://webhelp.esri.com/arcims/9.2/general/topics/author_world_files.htm (accessed on 9 April 2013).
[34]
OPALS Orientation and Processing of Airborne Laser Scanning Data. Available online: http://www.geo.tuwien.ac.at/opals/ (accessed on 19 November 2012).
[35]
IDC Software Package Geosi Netz. Available online: http://www.geosi.at/index.php?id=78&L=0 (accessed on 22 November 2012).
[36]
Zoller+Fr?hlich Software Package Z+F Laser Control 8.2. Available online: http://www.zf-laser.com/Z-F-LaserControl.132.0.html (accessed on 9 April 2013).
[37]
C?té, J.-F.; Widlowski, J.-L.; Fournier, R.A.; Verstraete, M.M. The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial lidar. Remote Sens. Environ 2009, 113, 1067–1081.