Alluvial fans in arid and semi-arid regions can provide important evidence of geomorphic and climatic changes, which reveal the evolution of the regional tectonic activity and environment. Synthetic aperture radar (SAR) remote sensing technology, which is sensitive to geomorphic features, plays an important role in quickly mapping alluvial fan units of different ages. In this paper, RADARSAT-2 (Canada’s C-band new-generation radar satellite) and ALOS-PALSAR (Japan’s advanced land observing satellite, phased array type L-band SAR sensor) data, acquired over the Shule River Alluvial Fan (SRAF), are used to extract backscattering coefficients, scattering mechanism-related information, and polarimetric characteristic parameters. The correlation between these SAR characteristic parameters and fan units of the SRAF of different ages was studied, and the spatial distribution of fan units, since the Late Pleistocene, was extracted based on the Maximum Likelihood classification method. The results prove that (1) some C-band SAR parameters can describe the geomorphic characteristics of alluvial fan units of different ages in the SRAF; (2) SAR data can be used to map the SRAF’s surface between the Late Pleistocene and the Holocene and to extract the spatial distribution of fan units; and (3) the time-spatial distribution of the SRAF can provide valuable information for tectonic and paleoenvironmental research of the study area.
References
[1]
Dorn, R.I. The Role of Climatic Change in Alluvial Fan Development. In Geomorphology of Desert Environments, 2nd ed; Parsons, A.J., Abrahams, A.D., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 723–742.
[2]
Nichols, K.K.; Bierman, P.R.; Foniri, W.R.; Gillespie, A.R.; Caffee, M.; Finkel, R. Dates and rates of arid region geomorphic processes. GSA Today 2006, 16, 4–11.
[3]
Bull, W.B. Geomorphic Responses to Climatic Change; Oxford University Press: New York, NY, USA, 1991.
[4]
Birkeland, P.W. Soils and Geomorphology; Oxford University Press: New York, NY, USA, 1984.
Kiss, T.; Sümeghy, B.; Sipos, G. Late Quaternary paleodrainage reconstruction of the Maros River alluvial fan. Geomorphology 2014, 204, 49–60.
[7]
Gómez-Paccard, M.; López-Blanco, M.; Costa, E.; Garcés, M.; Beamud, E.; Larrasoańa, J.C. Tectonic and climatic controls on the sequential arrangement of an alluvial fan/fan-delta complex (Montserrat, Eocene, Ebro Basin, NE Spain). Basin Res 2012, 24, 437–455.
[8]
Macklin, M.G.; Lewin, J.; Woodward, J.C. The fluvial record of climate change. Phil. Trans. R. Soc. A 2012, 370, 2143–2172.
[9]
Wells, S.G.; McFadden, L.D.; Dohrenwend, J.C. Influence of late Quaternary climatic changes on geomorphic and pedogenic processes on a desert piedmont, Eastern Mojave Desert, California. Quat. Res 1987, 27, 130–146.
[10]
McFadden, L.D.; Ritter, J.B.; Wells, S.G. Use of multiparameter relative-age methods for age estimation and correlation of alluvial fan surfaces on a desert piedmont, eastern Mojave Desert, California. Quat. Res 1989, 32, 276–290.
[11]
Guo, H. Radar Earth Observation Theory and Applications. (in Chinese);; Science Press: Beijing, China, 2000.
[12]
Zani, H.; Assine, M.L.; McGlue, M.M. Remote sensing analysis of depositional landforms in alluvial settings: Method development and application to the Taquari megafan, Pantanal (Brazil). Geomorphology 2012, 161–162, 82–92.
[13]
Ferrier, G.; Pope, R.J.J. Quantitative mapping of alluvial fan evolution using ground-based reflectance spectroscopy. Geomorphology 2012, 175–176, 14–24.
[14]
Le Page, M.; Berjamy, B.; Fakir, Y.; Bourgin, F.; Jarlan, L.; Abourida, A.; Benrhanem, M.; Jacob, G.; Huber, M.; Sghrer, F.; et al. An integrated DSS for groundwater management based on remote sensing. The case of a semi-arid aquifer in Morocco. Water Resour. Manag 2012, 26, 3209–3230.
[15]
Farr, T.G.; Chadwick, O.A. Geomorphic processes and remote sensing signatures of alluvial fans in the Kun Lun mountains, China. J. Geophys. Res 1996, 101, 23091–23100.
[16]
Kierein-Young, K.S. The integration of optical and radar data to characterize mineralogy and morphology of surfaces in Death Valley, California, USA. Int. J. Remote Sens 1997, 18, 1517–1541.
[17]
Wang, C.; Guo, H. Estimation of surface parameters from polarimetric SIR-C data (in Chinese). J. Remote Sens 1998, 2, 107–111.
[18]
Liao, J.; Pang, Z. Surface Parameters Retrieval from Alluvial Fan in Ejina Area of Inner Mongolia Using Multi-polarization SAR Data. Proceedings of the IEEE International on Geoscience and Remote Sensing Symposium, IGARSS 2009, Cape Town, South Africa, 12–17 July 2009.
[19]
Duarte, M.R.; Wozniak, E.; Recondo, C.; Cabo, C.; Marquínez, J.; Fernández, S. Estimation of surface roughness and stone cover in burnt soils using SAR images. Catena 2008, 74, 264–272.
[20]
Zhang, L.; Guo, H.; Liao, J.; Han, C. Research on copolarized correlation characteristic from Bodunqi alluvial fan using full-polarized SAR data (in Chinese). Remote Sens. Technol. Appl 2008, 23, 385–388.
[21]
Hung, W.-C.; Hwang, C.; Chen, Y.-A.; Chang, C.-P.; Yen, J.-Y.; Hooper, A.; Yang, C.-Y. Surface deformation from persistent scatterers SAR interferometry and fusion with leveling data: A case study over the Choushui River Alluvial Fan, Taiwan. Remote Sens. Environ 2011, 115, 957–967.
[22]
Catalano, S.; Bonforte, A.; Guglielmino, F.; Romagnoli, G.; Tarsia, C.; Tortorici, G. The influence of erosional processes on the visibility of Permanent Scatterers Features from SAR remote sensing on Mount Etna (E Sicily). Geomorphology 2013, 198, 128–137.
[23]
Zhang, L.; Liao, J.J.; Guo, H.D.; Han, C.M. Retrieving surface characteristic of alluvial fan from shuttle imaging radar data based on genetic algorithm and backscattering model (in Chinese). Chin. High Technol. Letters 2008, 8, 851–856.
[24]
Oh, Y.; Sarabandi, K.; Ulaby, F.T. Semi-empirical model of the ensemble-averaged differential mueller matrix for microwave backscattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens 2002, 40, 1348–1355.
[25]
Oh, Y.; Sarabandi, K.; Ulaby, F.T. An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens 1992, 30, 370–381.
[26]
Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag 2013, 1, 6–43.
[27]
Werninghaus, R.; Buckreuss, S. The TerraSAR-X mission and system design. IEEE Trans. Geosci. Remote Sens 2010, 48, 606–614.
[28]
Morena, L.C.; James, K.V.; Beck, J. An introduction to the RADARSAT-2 mission. Can. J. Remote Sens 2004, 30, 221–234.
[29]
Rosenqvist, A.; Shimada, M.; Ito, N.; Watanabe, M. ALOS PALSAR: A pathfinder mission for global-scale monitoring of the environment. IEEE Trans. Geosci. Remote Sens 2007, 45, 3307–3316.
[30]
Guo, H.; Li, X. Technical characteristics and potential application of the new generation SAR for earth observation (in Chinese). Chin. Sci. Bull 2011, 56, 1155–1168.
[31]
Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens 1997, 35, 68–78.
[32]
Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens 1996, 34, 498–518.
[33]
Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens 1998, 36, 963–973.
[34]
Wang, P.; Lu, Y.; Ding, G.; Chen, J.; Karl, H.W. Response of the development of the Shule River alluvial fan to tectonic activity. Quat. Sci. 2004, 24, 74–81.
[35]
Wang, P. Development of the Shule Alluvial-Fan and its Response to Tectonic Activity in Gansu Province, China—Characteristics of Neotectonic Activity of the East End of the Altyn Tagh Fault (in Chinese)Ph.D. Thesis. Institute of Geology, China Earthquake Administration, Beijing, China, 2003.
[36]
Mao, H.; Zhao, H.; Lu, Y.; Wang, C.; Zhang, K.; Yang, Z.; Liang, J. Pollen assemblages and environment evolution in shule river alluvial fan oasis of Gansu Province in Holocene. ACTA Geosci. Sin 2007, 28, 528–534.
[37]
Huntley, D.J.; Godfrey-Smith, D.I.; Thewalt, M.L.W. Optical dating of sediments. Nature 1985, 313, 105–107.
[38]
Jong-Sen, L.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009.
[39]
Richard, J.A.; Jia, X. Remote Sensing Digital Image Analysis: An Introduction, 3rd ed ed.; Springer: Berlin, Germany, 1999.
[40]
Mather, P.; Tso, B. Classification Methods for Remotely Sensed Data; CRC Press: Boca Raton, FL, USA, 2010.
[41]
Yao, T.; Thompson, L.G.; Shi, Y.; Qin, D.; Jiao, K.; Yang, Z.; Tian, L.; Thompson, E.M. Climate variation since the Last Interglaciation recorded in the Guliya ice core. Sci. China Ser. D: Earth Sci 1997, 40, 662–668.
[42]
Wu, Y.; Yang, T.; Yu, Y.; Liu, X.; An, C.; Li, Y.; Su, X. Holocene climate change and the ancient culture response in central Hexi corridor (in Chinese). Arid Zone Res 2006, 23, 650–653.