Evapotranspiration is a major loss flux of the water balance in arid and semi-arid areas. The estimation of actual evapotranspiration has significance for hydrological and environmental purposes. The Surface Energy Balance System (SEBS) algorithm was applied to estimate actual evapotranspiration in the Qaidam Basin and its eight hydrological sub-regions, Northwest China. There were 3,036 cloud-free and atmospherically corrected MODIS satellite images from 2001 to 2011 used in the SEBS algorithm to determine the?actual evapotranspiration. The result indicated that the estimated annual actual evapotranspiration of the basin increased with time and the value varied from 72.7 to 182.3?mm. SEBS estimates were 7.5% and 14.1% of observed pan evaporation over the western and eastern areas, respectively. The variation of SEBS actual evapotranspiration is influenced by climate factors, vegetation, net radiation, land cover type and water table depth. The analysis of the evaporative behavior of different land cover types in the basin presented that water bodies, marsh, and farmland had relatively higher mean actual evapotranspiration though these land cover types make up less than 3.5% of the total basin. Bare soil has very low evapotranspiration and covered almost 60% of the study area. The actual evapotranspiration was observed to be decreased with an increase of water table depth. Overall, the SEBS algorithm proved to be useful and has potential for estimating spatial actual evapotranspiration on a regional scale.
References
[1]
Sun, R.; Gao, X.; Liu, C.-M.; Li, X.-W. Evapotranspiration estimation in the Yellow River Basin, China using integrated NDVI data. Int. J. Remote Sens 2004, 10, 2523–2534.
[2]
Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Hirschboeck, K.K.; Brown, P. Review: Integrating remote sensing and ground methods to estimate evapotranspiration. Crit. Rev. Plant Sci 2007, 26, 139–168.
[3]
Yang, D.; Chen, H.; Lei, H. Estimation of evapotranspiration using a remote sensing model over agricultural land in the North China Plain. Int. J. Remote Sens 2010, 31, 3783–3798.
[4]
Rwasoka, D.T.; Gumindoga, W.; Gwenzi, J. Estimation of actual evapotranspiration using the surface Energy Balance System(SEBS) algorithm in the Upper Manyame catchment in Zimbabwe. Phys. Chem. Earth 2011, 36, 736–746.
[5]
Nagler, P.L.; Glenn, E.P.; Nguyen, U.; Scott, R.L.; Doody, T. Estimation riparian and agricultural actual evapotranspiration by reference evapotranspiration and MODIS enhanced vegetation index. Remote Sens 2013, 5, 3849–3871.
[6]
Brown, K.W.; Rosenberg, N.J. A resistance model to predict evapotranspiration and its application to a sugar beet field. Agron. J 1973, 65, 341–347.
[7]
Kite, G.W.; Pietroniro, A. Remote sensing application in hydrological modeling. Hydrol. Sci 1996, 41, 563–591.
[8]
Rango, A.; Shalaby, A.I. Urgent Operational Applications of Remote Sensing in Hydrology. In Operational Hydrology Report 43; World Meteorology Organization: Geneva, Switzerland, 1999.
[9]
Sobrino, J.A.; Gómez, M.; Jiménez-mu?oz, J.C.; Olioso, A. Application of a simple algorithm to estimate daily evapotranspiration from NOAA-AVHRR images for the Iberian Peninsula. Remote Sens. Environ 2007, 110, 139–148.
[10]
Morse, A.; Tasumi, M.; Allen, R.G.; Kramber, W.J. Application of the SEBAL Methodology for Estimating Consumptive Use of Water and Stream Flow Depletion in the Bear River Basin of Idaho through Remote Sensing. In The Raytheon Systems Company-Earth Observation System Data and Information System Project; The Raytheon Systems Company: Idaho Falls, ID, USA, 2000; p. 107.
[11]
Menenti, M.; Choudhury, B.J. Parametrization of Land Surface Evapotranspiration Using a Location Dependent Potential Evapotranspiration and Surface Temperature Range. In Exchange Processes at the Land Surface for a Range of Space and Time Scales; Bolle, H.J., Ed.; IAHS: Wallingford, CT, USA, 1993; pp. 561–588.
[12]
Norman, J.M.; Kustas, W.P.; Humes, K.S. A two-source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricult. For. Meteorol 1995, 77, 263–293.
[13]
Bastiaanssen, W.G.M.; Ahmed, M.; Chemin, Y. Satellite surveillance of evaporative depletion across the Indus Basin. Water Resour. Res 2002, 38, 1273–1282.
[14]
Roerink, G.J.; Su, Z.; Menenti, M. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Phys. Chem. Earth B 2000, 25, 147–157.
[15]
Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci 2002, 6, 85–99.
[16]
Gowda, P.H.; Chavez, J.L.; Colaizzi, P.D.; Evett, S.R.; Howell, T.A.; Tolk, J.A. Remote sensing based energy balance algorithms for mapping ET. Trans. ASABE 2007, 50, 1639–1644.
[17]
Kalma, J.D.; Mcvicar, T.R.; McCabe, M.F. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys 2008, 29, 421–469.
[18]
Kustas, W.; Anderson, M. Advances in thermal infrared remote sensing for land surface modeling. Agric. For. Meteorol 2009, 149, 2071–2081.
[19]
Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212–213, 198–212.
[20]
Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Model. J. Irrig. Drain. Eng 2007, 133, 380–394.
[21]
Sun, J.; Salvucci, G.D.; Entekhabi, D.; Farhadi, L. Parameter estimation of coupled water and energy balance models based on stationary constraints of surface states. Water Resour. Res 2011, 47, W02512.
[22]
Sun, J.; Salvucci, G.D.; Entekhabi, D. Estimates of evapotranspiration from MODIS and AMSR-E land surface temperature and moisture over the Southern Great Plains. Remote Sens. Environ 2012, 127, 44–59.
[23]
Kustas, W.P.; Norman, J.M. A two-source approach for estimating turbulent fluxes using multiple angle thermal infrared observations. Water Resour. Res 1997, 33, 1495–1508.
[24]
Anderson, M.C.; Kustas, W.P.; Norman, J.M. Upscaling flux observations from local to continental scales using thermal remote sensing. Agron. J 2007, 99, 240–254.
[25]
Su, Z.; Schmugge, T.; Kustas, W.P.; Massman, W.J. An evaluation of two models for estimation of roughness height for heat transfer between the land surface and atmosphere. J. Appl. Meteorol 2001, 40, 1933–1951.
[26]
Melesse, A.M.; Nangia, V. Estimation of spatially distributed surface energy fluxes using remotely-sensed data for agricultural fields. Hydrol. Process 2005, 19, 2653–2670.
[27]
Melesse, A.M.; Frank, A.; Nangia, V.; Hanson, J. Analysis of energy fluxes and land surface parameters in a grassland ecosystem: A remote sensing perspective. Int. J. Remote Sens 2008, 29, 3325–3341.
[28]
Senay, G.B.; Budde, M.; Verdin, J.P.; Melesse, A.M. A coupled remote sensing and simplified energy balance approach to estimate actual evapotranspiration from irrigated fields. Sensors 2007, 7, 979–1000.
[29]
Melesse, A.M.; Oberg, J.; Nangia, V.; Beeri, O.; Baumgartner, D. Spatiotemporal dynamics of evapotranspiration at the Glacial Ridge prairie restoration in northwestern Minnesota. Hydrol. Process 2006, 20, 1451–1464.
[30]
Kustas, W.P.; Anderson, M.C.; Norman, J.M.; Li, F. Utility of radiometric—Aerodynamic temperature relations for heat flux estimation. Bound.-Layer Meteorol 2007, 122, 167–187.
[31]
Melesse, A.M.; Abtew, W.; Dessalegne, T. Evaporation estimation of Rift Valley Lakes: Comparison of models. Sensors 2009, 9, 9603–9615.
[32]
Gokmen, M.; Vekerdy, Z.; Verhoef, A.; Verhoef, W.; Batelaan, O.; van der Tol, C. Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions. Remote Sens. Environ 2012, 121, 261–274.
[33]
Jia, L.; Su, Z.; van Den Hurk, B.J.J.M.; Menenti, M.; Moene, A.R.; de Bruin, H.A.R.; Yrisarry, J.J.B.; Ibanez, M.; Cuesta, A. Estimation of sensible heat flux using the surface energy balance system SEBS and ATSR measurements. Phys. Chem. Earth 2003, 28, 75–88.
[34]
Ma, Y.; Song, M.; Ishikawa, H.; Yang, K.; Koike, T.; Jia, L.; Menenti, M.; Su, Z. Estimation of the regional evaporative fraction over the Tibetan plateau area by using Landsat-7 ETM data and the field observations. J. Meteorol. Soc. Jpn 2007, 85A, 295–309.
[35]
Jin, X.M.; Schaepman, M.E.; Clevers, J.G.P.W.; Su, Z. Impact and consequences of evapotranspiration changes on water resources availability in the arid Zhangye Basin, China. Int. J. Remote Sens 2009, 30, 3223–3238.
[36]
Su, Z.; Pelgrum, H.; Menenti, M. Aggregation effects of surface heterogeneity in land surface processes. Hydrol. Earth Syst. Sci 1999, 3, 549–563.
[37]
Kustas, W.P.; Daughtry, C.S.T. Estimation of the soil heat flux/net radiation ratio from spectral data. Agric. For. Meteorol 1989, 49, 205–223.
[38]
Monteith, J.L. Principles of Environmental Physics; Edward Arnold: London, UK, 1973.
[39]
Van der Kwast, J.; Timmermans, W.; Gieske, A.; Su, Z.; Olioso, A.; Jia, L.; Elbers, J.; Karssenberg, D.; de Jong, S. Evaluation of the Surface Energy Balance System (SEBS) applied to ASTER imagery with flux-measurements at the SPARC 2004 site (Barrax, Spain). Hydrol. Earth Syst. Sci 2009, 13, 1337–1347.
[40]
Brutsaert, W. Evaporation into the Atmosphere: Theory, History, and Applications; Reidel Publishing: Dordrecht, The Netherlands, 1982.
[41]
Jin, S; Sader, S.A. MODIS time-series imagery for forest disturbance detection and quantification of patch size effects. Remote Sens. Environ 2005, 99, 462–470.
[42]
Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A crop phenology detection method using time-series MODIS data. Remote Sens. Environ 2005, 96, 366–374.
[43]
Knight, J.K.; Lunetta, R.L.; Ediriwickrema, J.; Khorram, S. Regional Scale Land-Cover Characterization using MODIS-NDVI 250m multi-temporal imagery: A phenology based approach. GISci. Remote Sens 2006, 43, 1–23.
[44]
Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, J.G.; Worthy, L.D. Landcover change detection using multi-temporal MODIS NDVI data. Remote Sens. Environ 2006, 105, 142–154.
[45]
Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains. Remote Sens. Environ 2007, 108, 290–310.
[46]
Caccamo, G.; Chisholm, L.A.; Bradstock, R.A.; Puotinen, M.L. Assessing the sensitivity of MODIS to monitor drought in high biomass ecosystems. Remote Sens. Environ 2011, 115, 2626–2639.
[47]
Hwang, T.; Song, C.; Bolstad, P.V.; Band, L.E. Downscaling real-time vegetation dynamics by fusing multi-temporal MODIS and Landsat NDVI in topographically complex terrain. Remote Sens. Environ 2011, 115, 2499–2512.
[48]
Le Marie, G.; Marsden, C.; Verhoef, W.; Ponzoni, F.J.; Seen, D.L.; Bégué, A.; Stape, J.L.; Nouvellon, Y. Leaf area index estimation with MODIS reflectance time series and model inversion during full rotations of Eucalyptus plantation. Remote Sens. Environ 2011, 115, 586–599.
[49]
Kumar, S.V.; Peters-Lidard, C.D.; Tian, Y.; Houser, P.R.; Geiger, J.; Olden, S.; Lighty, L.; Eastman, J.L.; Doty, B.; Dirmeyer, P.; et al. Land Information System—An interoperable framework for high resolution land surface modeling. Environ. Model. Softw 2006, 21, 1402–1415.
[50]
Badola, A. Validation of Surface Balance Systems SEBS over Forest Land Cover and Sensitivity Analysis of the ModelMaster Thesis. Faculty of Geo-Information and Earth Observation (ITC), University of Twente, Enschede, The Netherlands, 2009.