全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dynamic Hydrological Modeling in Drylands with TRMM Based Rainfall

DOI: 10.3390/rs5126691

Keywords: TRMM, drylands, Africa, rainfall, runoff, soil moisture, runoff harvesting

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper introduces and evaluates DryMOD, a dynamic water balance model of the key hydrological process in drylands that is based on free, public-domain datasets. The rainfall model of DryMOD makes optimal use of spatially disaggregated Tropical Rainfall Measuring Mission (TRMM) datasets to simulate hourly rainfall intensities at a spatial resolution of 1-km. Regional-scale applications of the model in seasonal catchments in Tunisia and Senegal characterize runoff and soil moisture distribution and dynamics in response to varying rainfall data inputs and soil properties. The results highlight the need for hourly-based rainfall simulation and for correcting TRMM 3B42 rainfall intensities for the fractional cover of rainfall (FCR). Without FCR correction and disaggregation to 1 km, TRMM 3B42 based rainfall intensities are too low to generate surface runoff and to induce substantial changes to soil moisture storage. The outcomes from the sensitivity analysis show that topsoil porosity is the most important soil property for simulation of runoff and soil moisture. Thus, we demonstrate the benefit of hydrological investigations at a scale, for which reliable information on soil profile characteristics exists and which is sufficiently fine to account for the heterogeneities of these. Where such information is available, application of DryMOD can assist in the spatial and temporal planning of water harvesting according to runoff-generating areas and the runoff ratio, as well as in the optimization of agricultural activities based on realistic representation of soil moisture conditions.

References

[1]  Cudennec, C.; Leduc, C.; Koutsoyiannis, D. Dryland hydrology in Mediterranean regions—A review. Hydrol. Sci. J 2007, 52, 1077–1087.
[2]  Bolle, H.J.; Andre, J.C.; Arrue, J.L.; Barth, H.K.; Bessemoulin, P.; Brasa, A.; DeBruin, H.A.R.; Cruces, J.; Dugdale, G.; Engman.. EFEDA: European field experiment in a desertification threatened area. Ann. Geophys 1993, 11, 173–189.
[3]  Helldén, U. Case Studies of Desertification Monitoring: A Discussion of EU Initiatives. Proceedings of Local & Regional Desertification Indicators in a Global Perspective: AIDCCD-Active Exchange of Experience on Indicators and Development of Prespectives in the Context of UNCCD, Beijing, China, 16–18 May 2005.
[4]  Leemans, R.; Kleidon, A. Regional and Global Assessment of the Dimensions of Desertification. In Global Desertification: Do Humans Cause Deserts; Reynolds, J.F., Stafford Smith, D.M., Eds.; Dahlem University Press: Berlin, Germany, 2002; pp. 215–232.
[5]  Deus, D.; Gloaguen, R.; Krause, P. Water balance modeling in a semi-arid environment with limited in situ data using remote sensing in Lake Manyara, East African Rift, Tanzania. Remote Sens 2013, 5, 1651–1680.
[6]  DeSurvey-IP. DeSurvey: A Surveillance System for Assessing and Monitoring Desertification, Available online: http://www.noveltis.com/desurvey (accessed on 3 December 2013).
[7]  Tarnavsky, E.; Mulligan, M.; Husak, G. Spatial disaggregation and intensity correction of TRMM-based rainfall time series for hydrological applications in dryland catchments. Hydrol. Sci. J 2012, 57, 248–264.
[8]  Bl?schl, G.; Sivapalan, M. Scale Issues in Hydrological Modelling: A Review. In Scale Issues in Hydrological Modelling; Kalma, J.D., Sivapalan, M., Eds.; Wiley: Chichester, UK, 1995.
[9]  Michaud, J.; Sorooshian, S. Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed. Water Resour. Res 1994, 30, 593–605.
[10]  Wheater, H. Hydrological Processes in Arid and Semi Arid Areas. In Hydrology of Wadi Systems: IHP Regional Network on Wadi Hydrology in the Arab Region; Wheater, H., Al-Weshah, R.A., Eds.; UNESCO International Hydrological Programme: Paris, France, 2002.
[11]  Al-Weshah, R.A. Rainfall-Runoff Analysis and Modelling in Wadi Systems. In Hydrology of Wadi Systems: IHP Regional Network on Wadi Hydrology in the Arab Region; Wheater, H., Al-Weshah, R.A., Eds.; UNESCO International Hydrological Programme: Paris, France, 2002.
[12]  Wesseling, C.G.; van Deursen, W.P.A.; de Wit, M. Rhine Basin. In Third Joint European Conference Exhibition on Geographical Information; Hodgson, S., Rumor, M., Harts, J.J., Eds.; IOS Press: Amsterdam, The Netherlands, 1997; pp. 487–496.
[13]  Mulligan, M. Global Gridded 1 km TRMM Rainfall Climatology and Derivatives. Version 1.0. Available online: http://geodata.policysupport.org/2b31climatology (accessed on 17 October 2013).
[14]  Mulligan, M. Three-Hourly Rainfall Time Series (from TRMM 3B42). Available online: http://geodata.policysupport.org/rainfall-timeseries (accessed on 17 October 2013).
[15]  Sharma, K.D.; Murthy, J.S.R. A practical approach to rainfall-runoff modelling in arid zone drainage basins. Hydrol. Sci. J 1998, 43, 331–348.
[16]  CGIAR-CSI CGIAR-CSI SRTM 90m DEM Digital Elevation Database, Version 3.0. Available online: http://srtm.csi.cgiar.org (accessed on 17 October 2013).
[17]  Hlaoui, Z. Les Fortes Pluies Journalieres. In Atlas de L’Eau en Tunisie; Henia, L., Ed.; Université de Tunis: Tunis, Tunisia, 2008.
[18]  Ouessar, M. Watershed of Zeuss-Koutine in Médenine, Tunisia: Overview and Assessment Methodology. In International Workshop on “Combating Desertification: Sustainable Management of Marginal Drylands (SUMAMAD)”; UNU-UNSCO-ICARDA and Institut des Régions Arides (IRA): Shiraz, Islamic Republic of Iran, 2003; pp. 94–99.
[19]  Sagna, P. Charactéristiques Climatiques. In Atlas du Sénégal; Yahmed, D.B., Ed.; Les éditions J.A.: Paris, France, 2007.
[20]  Kane, A.; Fall, A.N. Géologie et hydrogéologie. In Atlas du Sénégal; Yahmed, D.B., Ed.; Les éditions J.A.: Paris, France, 2007.
[21]  NASA-GSFC TRMM Product Level 2B Combined (PR, TMI) Rainfall Profile: TRMM 2B31. Available online: http://disc.sci.gsfc.nasa.gov/precipitation/documentation/TRMM_README/TRMM_2B31_readme.shtml (accessed on 17 October 2013).
[22]  NASA-GSFC TRMM and Other Satellites Precipitation Product. Available online: http://disc.gsfc.nasa.gov/precipitation/documentation/TRMM_README/TRMM_3B42_readme.shtml (accessed on 17 October 2013).
[23]  FAO/IIASA/ISRIC/ISS-CAS/JRC. Harmonized World Soil Database; 2008; p. 37.
[24]  Mulligan, M. Modelling the Hydrology of Vegetation Competition in a Degraded Semiarid Environment; King’s College London: London, UK, 1996.
[25]  Tranter, G.; Minasny, B.; Mcbratney, a.B.; Murphy, B.; Mckenzie, N.J.; Grundy, M.; Brough, D. Building and testing conceptual and empirical models for predicting soil bulk density. Soil Use Manag 2007, 23, 437–443.
[26]  Hansen, M.; Defries, R.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 1 km resolution using a decision tree classifier. Int. J. Remote Sens 2000, 21, 1331–1365.
[27]  Zeng, X. Global vegetation root distribution for land modeling. J. Hydrometeorol 2001, 2, 525–530.
[28]  Campbell, G.S. Soil Physics with BASIC: Transport Models for Soil-Plant Systems; Elsevier: Amsterdam, The Netherlands, 1985.
[29]  Thornthwaite, C.W. An approach toward a rational classication of climate. Geogr. Rev 1948, 38, 55–94.
[30]  Palmer, W.C.; Havens, A.V. A graphical technique for determining evapotranspiration by the thornthwaite method. Mon. Wea. Rev 1958, 86, 123–128.
[31]  Palmer, W.C. Meteorological Drought; US Weather Bureau: Washington, DC, USA, 1965; p. 58.
[32]  Mather, J.R.; Ambroziak, R.A. A search for understanding potential evapotranspiration. Geogr. Rev 1986, 76, 355–370.
[33]  Iqbal, M. Sun-Earth Astronomical Relationships: An Introduction to Solar Radiation; Academic Press: London, UK, 1983.
[34]  Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol 2005, 25, 1965–1978.
[35]  Packer, R.W.; Sangal, B.P. The heat and water balance of southern Ontario according to the budyko method. Can. Geogr. 1971, XV, 262–286.
[36]  Dyck, S. Overview on the Present Status of the Concepts of Water Balance Models. In New Approaches in Water Balance Computation; International Association of Hydrological Sciences (IAHS): Hamburg, Germany, 1983; pp. 3–19.
[37]  Xu, C.; Singh, V.P. A review on monthly water balance models for water resources investigations. Water Resour. Manag 1998, 12, 31–50.
[38]  Hendrickx, M.H.; Phillips, F.M.; Harrison, B.J. Water Flow Processes in Arid and Semi-Arid Zones. In Understanding Water in a Dry Environment; Simmers, I., Ed.; A.A. Balkema Publishers: Lisse, The Netherlands, 2003.
[39]  Lange, J.; Leibundgut, C. Surface Runoff and Sediment Dynamics in Arid and Semi-Arid Regions. In Understanding Water in a Dry Environment; Simmers, I., Ed.; A.A. Balkema Publishers: Lisse, The Netherlands, 2003.
[40]  Akan, O.A. Urban Stormwater Hydrology: A Guide to Engineering Calculations; Technomic Publishing: Lancaster, PA, USA, 1993; p. 268.
[41]  Smith, R.E.; Goodrich, D.C. Rainfall Excess Overland Flow. In Encyclopedia of Hydrologocal Sciences; Anderson, M.G., Ed.; John Wiley & Sons, Ltd: London, UK, 2005.
[42]  Warner, T.T. The Climates of the World Deserts. In Desert Meteorology; Cambridge University Press: Cambridge, UK, 2008; pp. 63–158.
[43]  Veihe, A.; Quinton, J. Sensitivity analysis of EUROSEM using Monte Carlo simulation I: Hydrological, soil and vegetation parameters. Hydrol. Process 2000, 14, 915–926.
[44]  Saltelli, A.; Tarantola, S.; Campolongo, F.; Ratto, M. Methods based on Decomposing the Variance of the Output. In Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models; John Wiley & Sons, Ltd: Chichester, UK, 2004; p. 216.
[45]  Wainwright, J.; Mulligan, M.; Thornes, J. Plants and Water in Drylands. In Eco-Hydrology: Plants and Water in Terrestrial and Aquatic Environments; Baird, A.J., Wilby, R.L., Eds.; Routledge Physical Environment Series: London, UK, 1999; pp. 78–126.
[46]  Tabor, J.A. Improving crop yields in the Sahel by means of water-harvesting. J. Arid Environ 1995, 30, 83–106.
[47]  Noy-Meir, I. Desert ecosystems: Environment and producers. Annu. Rev. Ecol. Syst 1973, 4, 25–51.
[48]  Ceballos, A.; Martines-Fernandes, J.; Santos, F.; Alonso, P. Soil-water behaviour of sandy soils under semi-arid conditions in the Duero Basin (Spain). J. Arid Environ 2002, 51, 501–519.
[49]  Twomlow, S.J.; Bruneau, P.M.C. The influence of tillage on semi-arid soil-water regimes in Zimbabwe. Geoderma 2000, 95, 33–51.
[50]  Balme, M.; Vischel, T.; Lebel, T.; Peugeot, C.; Galle, S. Assessing the water balance in the Sahel: Impact of small scale rainfall variability on runoff Part 1: Rainfall variability analysis. J. Hydrol 2006, 331, 336–348.
[51]  Whittaker, J. Generating gamma and beta random variables with non-integral shape parameters. Appl. Stat 1974, 23, 210–214.
[52]  Henia, L.; Benzarti, Z. Variabilite des Totaux Pluviometriques Annuels. In Atlas de L’Eau en Tunisie; Henia, L., Ed.; Université de Tunis: Tunis, Tunisia, 2008.
[53]  Global Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS). Available online: http://daac.ornl.gov/ (accessed on 17 October 2013).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133