全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Orthogonal Equations of Multi-Spectral Satellite Imagery for the Identification of Un-Excavated Archaeological Sites

DOI: 10.3390/rs5126560

Keywords: spectral enhancement, remote sensing archaeology, ground spectroscopy, crop marks

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper aims to introduce new linear orthogonal equations for different satellite data derived from QuickBird; IKONOS; WorldView-2; GeoEye-1, ASTER; Landsat 4 TM and Landsat 7 ETM+ sensors, in order to enhance the exposure of crop marks. The latest are of significant value for the detection of buried archaeological features using remote sensing techniques. The proposed transformations, re-projects the initial VNIR bands of the satellite image, into a new 3D coordinate system where the first component is the so called “crop mark”, the second component “vegetation” and the third component “soil”. For the purpose of this study, a large ground spectral signature database has been explored and analyzed separately for each different satellite image. The narrow band reflectance has been re-calculated using the Relative Spectral Response filters of each sensor, and then a PCA analysis was carried out. Subsequently, the first three PCA components were rotated in order to enhance the detection of crop marks. Finally, all proposed transformations have been successfully evaluated in different existing archaeological sites and some interesting crop marks have been exposed.

References

[1]  Bewley, R.H. Aerial survey for archaeology. Photogramm. Rec 2003, 18, 273–292.
[2]  Altaweel, M. The use of ASTER satellite imagery in archaeological contexts. Archaeol. Prosp 2005, 12, 151–166.
[3]  Beck, A. Archaeological Site Detection: The Importance of Contrast. Proceedings of the Annual Conference of the Remote Sensing and Photogrammetry Society, Newcastle University, Newcastle, UK, 11–14 September 2007.
[4]  Lasaponara, R.; Masini, N. Detection of archaeological crop marks by using satellite QuickBird multispectral imagery. J. Archaeol. Sci 2007, 34, 214–221.
[5]  Rowlands, A.; Sarris, A. Detection of exposed and subsurface archaeological remains using multi-sensor remote sensing. J. Archaeol. Sci 2007, 34, 795–803.
[6]  Agapiou, A.; Hadjimitsis, D.G. Vegetation indices and field spectro-radiometric measurements for validation of buried architectural remains: Verification under area surveyed with geophysical campaigns. J. Appl. Remote Sens. 2011, 5, doi:10.1117/1.3645590.
[7]  Alexakis, D.; Sarris, A.; Astaras, T.; Albanakis, K. Detection of neolithic settlements in thessaly (Greece) through multispectral and hyperspectral satellite imagery. Sensors 2009, 9, 1167–1187.
[8]  Alexakis, A.; Sarris, A.; Astaras, T.; Albanakis, K. Integrated GIS, remote sensing and geomorphologic approaches for the reconstruction of the landscape habitation of Thessaly during the Neolithic period. J. Archaeol. Sci 2011, 38, 89–100.
[9]  Gojda, M.; Hejcman, M. Cropmarks in main field crops enable the identification of a wide spectrum of buried features on archaeological sites in Central Europe. J. Archaeol. Sci 2012, 39, 1655–1664.
[10]  Jonson, K.J. Remote Sensing in Archaeology. An explicitly North America Perspective; The University of Alabama Press: Tuscaloosa, AL, USA, 2006; p. 344.
[11]  Sharpe, L. Geophysical, Geochemical and Arable Crop Responses to Archaeological Sites in the Upper Clyde Valley, ScotlandPh.D. Thesis. Department of Archaeology, Faculty of Physical Sciences, University of Glasgow, Glasgow, UK, 2004.
[12]  Tarantino, E.; Figorito, B. Steerable filtering in interactive tracing of archaeological linear features using digital true colour aerial images. Int. J. Dig. Earth 2013, doi:10.1080/17538947.2013.803612.
[13]  D’Orazio, T.; Palumbo, F.; Guaragnella, C. Archaeological trace extraction by a local directional active contour approach. Patt. Recog 2012, 45, 3427–3438.
[14]  Winton, H.; Horne, P. National Archives for National Survey Programmes: NMP and the English Heritage Aerial Photograph Collection. In Landscapes through the Lens. Aerial Photographs and Historic Enviroment; Oxbow Books: Oxford, UK, 2010; pp. 7–18.
[15]  Kaimaris, D.; Patias, P. Best period for high spatial resolution satellite images for the detection of marks of buried structures. Egypt. J. Remote Sens. Space Sci. 2012, doi:10.1016/j.ejrs.2011.12.001.
[16]  Lasaponara, R.; Masini, N. Satellite remote sensing in archaeology: Past, present and future perspectives. J. Archaeol. Sci 2011, 38, 1995–2002.
[17]  Agapiou, A.; Alexakis, D.D.; Hadjimitsis, D.G. Spectral sensitivity of ALOS, ASTER, IKONOS, LANDSAT and SPOT satellite imagery intended for the detection of archaeological crop marks. Int. J. Dig. Earth 2012, doi:10.1080/17538947.2012.674159.
[18]  Bassani, C.; Cavalli, R.M.; Goffredo, R.; Palombo, A.; Pascucci, S.; Pignatti, S. Specific spectral bands for different land cover contexts to improve the efficiency of remote sensing archaeological prospection: The Arpi case study. J. Cult. Herit 2009, 10, 41–48.
[19]  Cavalli, R.M.; Colosi, F.; Palombo, A.; Pignatti, S.; Poscolieri, M. Remote hyperspectral imagery as a support to archaeological prospection. J. Cult. Herit 2007, 8, 272–283.
[20]  De Laet, V.; Paulissen, E.; Waelkens, M. Methods for the extraction of archaeological features from very high-resolution Ikonos-2 remote sensing imagery, Hisar (southwest Turkey). J. Archaeol. Sci 2007, 34, 830–841.
[21]  Agapiou, A.; Hadjimitsis, D.G.; Sarris, A.; Georgopoulos, A.; Alexakis, D.D. Optimum temporal and spectral window for monitoring crop marks over archaeological remains in the mediterranean region. J. Archaeol. Sci 2013, 40, 1479–1492.
[22]  Agapiou, A.; Hadjimitsis, D.G.; Alexakis, D.D. Evaluation of broadband and narrowband vegetation indices for the identification of archaeological crop marks. Remote Sens 2012, 4, 3892–3919.
[23]  Mills, J.; Palmer, R. Populating Clay Landscapes; Tempus: Stroud, UK, 2007; p. 192.
[24]  Kauth, R.J.; Thomas, G.S. The Tasseled Cap—A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by LANDSAT. Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, West Lafayette, IN, USA, 29 June–1 July 1976; pp. 44–51.
[25]  Yarbrough, D.L.; Easson, G.; Kuszmaul, S.J. Proposed workflow for improved Kauth-Thomas transform derivations. Remote Sens. Environ 2012, 124, 810–818.
[26]  Healey, S.P.; Cohen, W.B.; Yang, Z.; Krankina, N.O. Comparison of Tasseled Cap-based Landsat data strucutes for use in forest disturbance detection. Remote Sens. Environ 2005, 97, 301–310.
[27]  Crist, E.P.; Kauth, R.J. The tasseled cap de-mystified. Photogramm. Eng. Remote Sens 1986, 52, 81–86.
[28]  De Silva, M.R.L.F. Determination of “Tasseled Cap” Transformation Parameters for Images Obtained by the SPOT Satellite. Proceedings of the Twenty-Fourth International Symposium on Remote Sensing of Environment, Rio de Janeiro, RJ, Brazil, 27–31 May 1991; pp. 291–300.
[29]  Yarbrough, L.D.; Easson, G.; Kuszmaul, S.J. Tasseled Cap Coefficients for the QuickBird2 Sensor: A Comparison of Methods and Development. Proceedings of the 16-American Society for Photogrammetry and Remote Sensing, Sioux Falls, SD, USA, 23–27 October 2005; pp. 23–27.
[30]  Yarbrough, L.D.; Easson, G.; Kuszmaul, S.J. Using at-Sensor Radiance and Reflectance Tasseled Cap Transforms Applied to Change Detection for the ASTER Sensor. Proceedings of the IEEE Third International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, Biloxi, MS, USA, 16–18 May 2005.
[31]  Trishchenko, P.A.; Cihlar, J.; Li, Z. Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors. Remote Sens. Environ 2002, 81, 1–18.
[32]  Courault, D.; Seguin, B.; Olioso, A. Review to Estimate Evapotranspiration from Remote Sensing Data: Some Examples from the Simplified Relationship to the Use of Mesoscale Atmospheric Models. Proceedings of the ICID Workshop on Remote Sensing of ET for Large Regions, Montpellier, France, 17 September 2003.
[33]  Agapiou, A.; Hadjimitsis, D.G.; Papoutsa, C.; Alexakis, D.D.; Papadavid, G. The importance of accounting for atmospheric effects in the application of NDVI and interpretation of satellite imagery supporting archaeological research: The case studies of palaepaphos and NEA Paphos sites in Cyprus. Remote Sens 2011, 3, 2605–2629.
[34]  Che, N.; Price, J.C. Survey of Radiometric calibration results and methods for visible and near infrared channels of NOAA-7, -9, and -11 AVHRRs. Remote Sens. Environ 1992, 41, 19–27.
[35]  Hadjimitsis, D.G.; Papadavid, G.; Agapiou, A.; Themistocleous, K.; Hadjimitsis, M.G.; Retalis, A.; Michaelides, S.; Chrysoulakis, N.; Toulios, L.; Clayton, C.R.I. Atmospheric correction for satellite remotely sensed data intended for agricultural applications: Impact on vegetation indices. Nat. Hazards Earth Syst. Sci 2010, 10, 89–95.
[36]  Agapiou, A.; Sarris, A.; Hadjimitsis, D.G.; Georgopoulos, A. Exploring Ground Spectroscopy for the Detection of Sub-Surfaces Architectural Remains: The Methodological Context. Proceedings of the XVI Congress of the UISPP (International Union for Prehistoric and Protohistoric Sciences), Florianopolil, SC, Brazil, 4–10 September 2011.
[37]  Milton, E.J.; Rollin, E.M. Estimating the irradiance spectrum from measurements in a limited number of spectral bands. Remote Sens. Environ 2006, 100, 348–355.
[38]  Milton, J. Principles of field spectroscopy. Remote Sens. Environ 1987, 8, 1807–1827.
[39]  Sarris, A.; Papadopoulos, N.; Agapiou, A.; Salvi, M.C.; Hadjimitsis, D.G.; Parkinson, A.; Yerkes, R.W.; Gyucha, A.; Duffy, R.P. Integration of geophysical surveys, ground hyperspectral measurements, aerial and satellite imagery for archaeological prospection of prehistoric sites: The case study of Vészt?-Mágor Tell, Hungary. J. Archaeol. Sci 2013, 40, 1454–1470.
[40]  Masini, N.; Lasaponara, R.; Orefici, G. Addressing the challenge of detecting archaeological adobe structures in Southern Peru using QuickBird imagery. J. Cult. Herit 2009, 10, 3–9.
[41]  Deroin, J.-P.; Téreygeol, F.; Heckes, J. Evaluation of very high to medium resolution multispectral satellite imagery for geoarchaeology in arid regions—Case study from Jabali, Yemen. J. Archaeol. Sci 2011, 38, 101–114.
[42]  Parcak, S.H. Satellite Remote Sensing for Archaeology; Routledge Taylor and Francis Group Press: London, UK, 2009; p. 320.
[43]  Steven, D.M.; Malthus, J.T.; Baret, F.; Xu, H.; Chopping, J.M. Intercalibration of vegetation indices from different sensor systems. Remote Sens. Environ 2003, 88, 412–422.
[44]  Monteith, J.L.; Unsworth, M.H. Principles of Environmental Physics; Edward Arnold: London, UK, 1990; p. 440.
[45]  Agapiou, A.; Hadjimitsis, D.G.; Georgopoulos, A.; Sarris, A.; Alexakis, D.D. Towards to an archaeological index: Identify the spectral regions of stress vegetation due to buried archaeological remain. Lect. Notes Comput. Sci 2012, 7616, 129–138.
[46]  Matzanas, C. Odysseus. Available online: http://odysseus.culture.gr/ (accessed on 27 October 2013).
[47]  Agapiou, A.; Hadjimitsis, D.G.; Sarris, A.; Georgopoulos, A.; Alexakis, D.D. Linear Spectral Unmixing for the Detection of Neolithic Settlements in the Thessalian Plain, Central Greece. Proceedings of the 32nd EARSeL Symposium, Mykonos Island, Greece, 21–24 May 2012; pp. 125–140.
[48]  Noviello, M.; Ciminale, M.; de Pasquale, V. Combined application of pansharpening and enhancement methods to improve archaeological cropmark visibility and identification in QuickBird imagery: Two case studies from Apulia, Southern Italy. J. Archaeol. Sci 2013, 40, 3604–3613.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133