全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Videographic Analysis of Eriophorum Vaginatum Spatial Coverage in an Ombotrophic Bog

DOI: 10.3390/rs5126501

Keywords: peatland, Eriophorum vaginatum, cotton grass, classification, UAV, rotorcraft, videography, RPAS

Full-Text   Cite this paper   Add to My Lib

Abstract:

The use of Remotely Piloted Aircraft Systems (RPAS) as well as newer automated unmanned aerial vehicles is becoming a standard method in remote sensing studies requiring high spatial resolution (<1 m) and very precise temporal data to capture phenological events. In this study we use a low cost rotorcraft to map Eriophorum vaginatum at Mer Bleue, an ombrotrophic bog located east of Ottawa, ON, Canada. We focus on E. vaginatum because this sedge plays an important role in methane (CH 4) gas exchange in peatlands. Using the remote controlled rotorcraft we were able to record, process, and mosaic 11.1 hectares of 4.5 cm spatial resolution imagery extracted from individual frames of video recordings (post georegistration RMSE 4.90 ± 4.95 cm). Our results, based on a supervised classification (96% accuracy) of the red, green, blue image planes, indicate a total tussock cover of 2,417 m 2. Because the basal area of the plant is more relevant for calculating its contribution to the CH 4 flux, the tussock area was related to the basal area from field data (R 2 = 0.88, p < 0.0001). Our final results indicate a total basal area of 1,786 ± 62.8 m 2. Based on temporal measurements of CH 4 flux from the peatland as a whole that vary over the growing season, we estimate the E. vaginatum contribution to range from 3.0% to 17.3% of that total. Overall, our low cost approach was an effective non-destructive way to derive E. vaginatum coverage and estimate CH 4 exchange over the growing season.

References

[1]  Berni, J.A.J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens 2009, 47, 722–738.
[2]  Knoth, C.; Klein, B.; Prinz, T.; Kleinebecker, T. Unmanned aerial vehicles as innovative remote sensing platforms for high-resolution infrared imagery to support restoration monitoring in cut-over bogs. Appl. Veg. Sci 2013, 16, 509–517.
[3]  Anderson, K.; Bennie, J.J.; Milton, E.J.; Hughes, P.D.M.; Lindsay, R.; Meade, R. Combining LiDAR and IKONOS data for eco-hydrological classification of an ombrotrophic peatland. J. Environ. Qual 2010, 39, 260–273.
[4]  Dribault, Y.; Chokmani, K.; Bernier, M. Monitoring seasonal hydrological dynamics of Minerotrophic peatlands using multi-date GeoEye-1 high resolution imagery and object-based classification. Remote Sens 2012, 4, 1887–1912.
[5]  Middleton, M.; Narhi, P.; Arkimaa, H.; Hyvonen, E.; Kuosmanen, V.; Treitz, P.; Sutinen, R. Ordination and hyperspectral remote sensing approach to classify peatland biotopes along soil moisture and fertility gradients. Remote Sens. Environ 2012, 124, 596–609.
[6]  Weissert, L.F.; Disney, M. Carbon storage in peatlands: A case study on the Isle of Man. Geoderma 2013, 204, 111–119.
[7]  Garnett, M.H.; Hardie, S.M.L.; Murray, C. Radiocarbon analysis of methane emitted from the surface of a raised peat bog. Soil Biol. Biochem 2012, 50, 158–163.
[8]  Roulet, N.T.; Lafleur, P.M.; Richard, P.J.H.; Moore, T.R.; Humphreys, E.R.; Bubier, J. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Glob. Chang. Biol 2007, 13, 397–411.
[9]  Gorham, E. Northern peatlands: Role in the carbon budget and probable responses to global warming. Ecol. Appl 1991, 1, 182–195.
[10]  Wahlen, M.; Tanaka, N.; Henry, R.; Deck, B.; Zeglen, J.; Vogel, J.S.; Southon, J.; Shemesh, A.; Fairbanks, R.; Broecker, W. Carbon-14 in methane sources and in atmospheric methane: The contribution from fossil carbon. Science 1989, 245, 286–290.
[11]  Moore, T.; Dalva, M. The influence of temperature and water table position on methane and carbone dioxide emissions from laboratory columns and peatland soils. J. Soil Sci 1993, 44, 651–654.
[12]  Bogart, S.J.; Spiers, G.; Cholewa, E. X-ray mu CT imaging technique reveals corm microstructures of an arctic-boreal cotton-sedge, Eriophorum vaginatum. J. Struct. Biol 2010, 171, 361–371.
[13]  Marinier, M.; Glatzel, S.; Moore, T.R. The role of cotton-grass (Eriophorum vaginatum) in the exchange of CO2 and CH4 at two restored peatlands, eastern Canada. Ecoscience 2004, 11, 141–149.
[14]  Moore, T.R.; De Young, A.; Bubier, J.L.; Humphreys, E.R.; Lafleur, P.M.; Roulet, N.T. A multi-year record of methane flux at the Mer Bleue Bog, Southern Canada. Ecosystems 2011, 14, 646–657.
[15]  Frolking, S.; Roulet, N.T.; Moore, T.R.; Lafleur, P.M.; Bubier, J.L.; Crill, P.M. Modeling seasonal to annual carbon balance of Mer Bleue Bog, Ontario, Canada. Glob. Biogeochem. Cycles 2002, 16, 4:1–4:21.
[16]  Lai, D.Y.F.; Roulet, N.T.; Humphreys, E.R.; Moore, T.R.; Dalva, M. The effect of atmospheric turbulence and chamber deployment period on autochamber CO2 and CH4 flux measurements in an ombrotrophic peatland. Biogeosciences 2012, 9, 3305–3322.
[17]  Rango, A.; Laliberte, A.; Steele, C.; Herrick, J.E.; Bestelmeyer, B.; Schmugge, T.; Roanhorse, A.; Jenkins, V. Using unmanned aerial vehicles for rangelands: Current applications and future potentials. Environ. Pract 2006, 8, 159–168.
[18]  Duan, S.B.; Li, Z.L.; Tang, B.H.; Wu, H.; Ma, L.L.; Zhao, E.Y.; Li, C.R. Land surface reflectance retrieval from hyperspectral data collected by an unmanned aerial vehicle over the Baotou test site. Plos One 2013, 8, e66972.
[19]  Forbrich, I.; Kutzbach, L.; Wille, C.; Becker, T.; Wu, J.B.; Wilmking, M. Cross-evaluation of measurements of peatland methane emissions on microform and ecosystem scales using high-resolution landcover classification and source weight modelling. Agric. For. Meteorol 2011, 151, 864–874.
[20]  Bubier, J.; Moore, T.; Savage, K.; Crill, P. A comparison of methane flux in a boreal landscape between a dry and a wet year. Glob. Biogeochem. Cy. 2005, doi:10.1029/2004GB002351.
[21]  Thomas, V.; Treitz, P.; Jelinski, D.; Miller, J.; Lafleur, P.; McCaughey, J.H. Image classification of a northern peatland complex using spectral and plant community data. Remote Sens. Environ 2003, 84, 83–99.
[22]  Uto, K.; Seki, H.; Saito, G.; Kosugi, Y. Characterization of rice paddies by a UAV-mounted miniature hyperspectral sensor system. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2013, 6, 851–860.
[23]  Jensen, J.R; Jensen, R.R. Introductory Geographic Information Systems; Pearson: New York USA, 2013.
[24]  Ripley, B.D. Spatial Statistics; John-Wiley & Sons: New York, USA, 2004.
[25]  Lloyd, C.D. Spatial Data Analysis: An Introduction for GIS Users; Oxford University Press: Oxford, UK, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133