Multi-temporal satellite imagery can be composited over a season (or other time period) to produce imagery which is representative of that period, using techniques which will reduce contamination by cloud and other problems. For the purposes of vegetation monitoring, a commonly used technique is the Maximum NDVI Composite, used in conjunction with variety of other constraints. The current paper proposes an alternative based on the medoid (in reflectance space) over the time period (the medoid is a multi-dimensional analogue of the median), which is robust against extreme values, and appears to be better at producing imagery which is representative of the time period. For each pixel, the medoid is always selected from the available dates, so the result is always a single observation for that pixel, thus preserving relationships between bands. The method is applied to Landsat TM/ETM+ imagery to create seasonal reflectance images (four per year), with the aim being a regular time series of reflectance values which captures the variability at seasonal time scales. Analysis of the seasonal reflectance values suggests that resulting temporal image composites are more representative of the time series than the maximum NDVI seasonal composite.
References
[1]
Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens 1986, 7, 1417–1434.
[2]
Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ 2002, 83, 195–213.
[3]
Roy, D.P.; Ju, J.; Kline, K.; Scaramuzza, P.L.; Kovalskyy, V.; Hansen, M.; Loveland, T.R.; Vermote, E.; Zhang, C. Web-Enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States. Remote Sens. Environ 2010, 114, 35–49.
[4]
Vermote, E.F.; Kotchenova, S.Y.; Ray, J.P. MODIS Surface Reflectance User’s Guide (Version 1.3); MODIS Land Surface Reflectance Science Computing Facility: College Park, Maryland, USA, 2011.
[5]
Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.P.; et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ 2002, 83, 135–148.
[6]
Kovalskyy, V.; Roy, D. The global availability of Landsat 5 TM and Landsat 7 ETM + land surface observations and implications for global 30 m Landsat data product generation. Remote Sens. Environ 2013, 130, 280–293.
[7]
Flood, N.; Danaher, T.; Gill, T.; Gillingham, S. An operational scheme for deriving standardised surface reflectance from Landsat TM/ETM+ and SPOT HRG imagery for eastern Australia. Remote Sens 2013, 5, 83–109.
[8]
Roy, D.P.; Ju, J.; Lewis, P.; Schaaf, C.; Gao, F.; Hansen, M.; Lindquist, E. Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sens. Environ 2008, 112, 3112–3130.
[9]
Li, F.; Jupp, D.; Reddy, S.; Lymburner, L.; Mueller, N.; Tan, P.; Islam, A. An evaluation of the use of atmospheric and BRDF correction to standardize landsat data. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens 2010, 3, 257–270.
[10]
Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ 2012, 118, 83–94.
[11]
Goodwin, N.R.; Collett, L.J.; Denham, R.J.; Flood, N.; Tindall, D. Cloud and cloud shadow screening across Queensland, Australia: An automated method for Landsat TM/ETM+ time series. Remote Sens. Environ 2013, 134, 50–65.
[12]
Townshend, J.R.; Masek, J.G.; Huang, C.; Vermote, E.F.; Gao, F.; Channan, S.; Sexton, J.O.; Feng, M.; Narasimhan, R.; Kim, D.; et al. Global characterization and monitoring of forest cover using Landsat data: Opportunities and challenges. Int. J. Digit. Earth 2012, 5, 373–397.
[13]
Small, C.G. A survey of multidimensional medians. Int. Stat. Rev. Revue Int. Stat 1990, 58, 263–277.
[14]
Haldane, J.B.S. Note on the median of a multivariate distribution. Biometrika 1948, 35, 414–417.
[15]
Struyf, A.; Hubert, M.; Rousseeuw, P. Clustering in an object-oriented environment. J. Stat. Softw 1997, 1, 1–30.
[16]
Crist, E.P. A TM Tasseled Cap equivalent transformation for reflectance factor data. Remote Sens. Environ 1985, 17, 301–306.
[17]
Scarth, P.; R?der, A.; Schmidt, M. Tracking Grazing Presure and Climate Interaction—The Role of ¨ Landsat Fractional Cover in Time Series Analysis. Proceedings of the 15th Australasian Remote Sensing and Photogrammetry Conference, Alice Springs, Australia, 13–17 September 2010; pp. 936–948.
[18]
USGS Earth Explorer Website. Available online: http://earthexplorer.usgs.gov (accessed on 3 May 2012).
[19]
Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004.
[20]
Geosciences Australia. 1 Second SRTM Derived Digital Elevation Models User Guide, Version 1.0; Geosciences Australia: Canberra, Australia, 2010.
[21]
Robertson, P. Spatial transformations for rapid scan-line surface shadowing. IEEE Comput. Graph. Appl 1989, 9, 30–38.
[22]
Trenberth, K.E. What are the seasons. Bull. Am. Meteorol. Soc 1983, 64, 1276–1282.
[23]
Storey, J.; Scaramuzza, P.; Schmidt, G.; Barsi, J. Landsat-7 Scan Line Corrector-Off Gap-Filled Product Development. Proceedings of Pecora 16 Conference, Sioux Falls, SD, USA, 23–27 October 2005.
[24]
Markham, B.L.; Helder, D.L. Forty-year calibrated record of earth-reflected radiance from Landsat: A review. Remote Sens. Environ 2012, 122, 30–40.
[25]
Teillet, P.; Barker, J.; Markham, B.; Irish, R.; Fedosejevs, G.; Storey, J. Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote Sens. Environ 2001, 78, 39–54.
[26]
Ju, J.; Roy, D.P.; Vermote, E.; Masek, J.; Kovalskyy, V. Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods. Remote Sens. Environ 2012, 122, 175–184.
[27]
Gillingham, S.; Flood, N.; Gill, T. On determining appropriate aerosol optical depth values for atmospheric correction of satellite imagery for biophysical parameter retrieval: Requirements and limitations under Australian conditions. Int. J. Remote Sens 2013, 34, 2089–2100.
[28]
Hamming, R. Digital Filters; Dover Publications: Mineola, NY, USA, 1989.
[29]
Shannon, C. Communication in the presence of noise. Proc. IRE 1949, 37, 10–21.