全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Canopy Fuel Load Mapping of Mediterranean Pine Sites Based on Individual Tree-Crown Delineation

DOI: 10.3390/rs5126461

Keywords: tree crown extraction, GEOBIA, object based, canopy fuel load, forest?parameters

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study presents an individual tree-crown-based approach for canopy fuel load estimation and mapping in two Mediterranean pine stands. Based on destructive sampling, an allometric equation was developed for the estimation of crown fuel weight considering only pine crown width, a tree characteristic that can be estimated from passive imagery. Two high resolution images were used originally for discriminating Aleppo and Calabrian pines crown regions through a geographic object based image analysis approach. Subsequently, the crown region images were segmented using a watershed segmentation algorithm and crown width was extracted. The overall accuracy of the tree crown isolation expressed through a perfect match between the reference and the delineated crowns was 34.00% for the Kassandra site and 48.11% for the Thessaloniki site, while the coefficient of determination between the ground measured and the satellite extracted crown width was 0.5. Canopy fuel load values estimated in the current study presented mean values from 1.29 ± 0.6 to 1.65 ± 0.7 kg/m 2 similar to other conifers worldwide. Despite the modest accuracies attained in this first study of individual tree crown fuel load mapping, the combination of the allometric equations with satellite-based extracted crown width information, can contribute to the spatially explicit mapping of canopy fuel load in Mediterranean areas. These maps can be used among others in fire behavior prediction, in fuel reduction treatments prioritization and during active fire suppression.

References

[1]  Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape–wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manage 2011, 92, 2389–2402.
[2]  Koutsias, N.; Arianoutsou, M.; Kallimanis, A.S.; Mallinis, G.; Halley, J.M.; Dimopoulos, P. Where did the fires burn in Peloponnisos, Greece the summer of 2007? Evidence for a synergy of fuel and weather. Agric. For. Meteorol 2012, 156, 41–53.
[3]  Pérez, B.; Cruz, A.; Fernández-González, F.; Moreno, J.M. Effects of the recent land-use history on the postfire vegetation of uplands in Central Spain. For. Ecol. Manage 2003, 182, 273–283.
[4]  Dimitrakopoulos, A.P.; Panov, P.I. Pyric properties of some dominant Mediterranean vegetation species. Int. J. Wildland Fire 2001, 10, 23–27.
[5]  Quezel, P. Taxonomy and Biogeography of Mediterranean Pines (Pinus halepensis and P-brutia). In Ecology, Biogeography and Management of Pinus halepensis and P. brutia Forest Ecosystems in the Mediterranean Basin; Ne'eman, G., Trabaud, L., Eds.; Backhuys Publishers: Leiden, Sweden, 2000; pp. 1–12.
[6]  Dimitrakopoulos, A.P. PYROSTAT—A computer program for forest fire data inventory and analysis in Mediterranean countries. Environ. Model. Softw 2001, 16, 351–359.
[7]  Salis, M.; Ager, A.A.; Arca, B.; Finney, M.A.; Bacciu, V.; Duce, P.; Spano, D. Assessing exposure of human and ecological values to wildfire in Sardinia, Italy. Int. J. Wildland Fire 2013, 22, 549–565.
[8]  Koutsias, N.; Karteris, M. Classification analyses of vegetation for delineating forest fire fuel complexes in a Mediterranean test site using satellite remote sensing and GIS. Int. J. Remote Sens 2003, 24, 3093–3104.
[9]  Cruz, M.G.; Alexander, M.E.; Wakimoto, R.H. Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America. Int. J. Wildland Fire 2003, 12, 39–50.
[10]  Cruz, M.G.; Alexander, M.E.; Wakimoto, R.H. Development and testing of models for predicting crown fire rate of spread in conifer forest stands. Can. J. Forest Res 2005, 35, 1626–1639.
[11]  Keane, R.E.; Burgan, R.; van Wagtendonk, J. Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling. Int. J. Wildland Fire 2001, 10, 301–319.
[12]  Seielstad, C.; Stonesifer, C.; Rowell, E.; Queen, L. Deriving fuel mass by size class in Douglas-fir (Pseudotsuga menziesii) using terrestrial laser scanning. Remote Sens 2011, 3, 1691–1709.
[13]  Skowronski, N.S.; Clark, K.L.; Duveneck, M.; Hom, J. Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems. Remote Sens. Environ 2011, 115, 703–714.
[14]  Fernandes, P.A.M.; Loureiro, C.A.; Botelho, H.S. Fire behaviour and severity in a maritime pine stand under differing fuel conditions. Ann. Forest Sci 2004, 61, 537–544.
[15]  Mitsopoulos, I.D.; Dimitrakopoulos, A.P. Canopy fuel characteristics and potential crown fire behavior in Aleppo pine (Pinus halepensis Mill.) forests. Ann. For. Sci 2007, 64, 287–299.
[16]  Kü?ük, ?.; Bilgili, E.; Saglam, B. Estimating crown fuel loading for calabrian pine and Anatolian black pine. Int. J. Wildland Fire 2008, 17, 147–154.
[17]  Erdody, T.L.; Moskal, L.M. Fusion of LiDAR and imagery for estimating forest canopy fuels. Remote Sens. Environ 2010, 114, 725–737.
[18]  Mallinis, G.; Mitsopoulos, I.D.; Dimitrakopoulos, A.P.; Gitas, I.Z.; Karteris, M. Local-scale fuel-type mapping and fire behavior prediction by employing high-resolution satellite imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2008, 1, 230–239.
[19]  Lasaponara, R.; Lanorte, A. On the capability of satellite VHR QuickBird data for fuel type characterization in fragmented landscape. Ecol. Model 2007, 204, 79–84.
[20]  Lasaponara, R.; Lanorte, A. Remotely sensed characterization of forest fuel types by using satellite ASTER data. Int. J. Appl. Earth Obs. Geoinf 2007, 9, 225–234.
[21]  Keramitsoglou, I.; Kontoes, C.; Sykioti, O.; Sifakis, N.; Xofis, P. Reliable, accurate and timely forest mapping for wildfire management using ASTER and Hyperion satellite imagery. For. Ecol. Manage 2008, 255, 3556–3562.
[22]  Jin, S.; Chen, S.-C. Application of QuickBird imagery in fuel load estimation in the Daxinganling region, China. Int. J. Wildland Fire 2012, 21, 583–590.
[23]  Arroyo, L.A.; Pascual, C.; Manzanera, J.A. Fire models and methods to map fuel types: The role of remote sensing. For. Ecol. Manage 2008, 256, 1239–1252.
[24]  Brandis, K.; Jacobson, C. Estimation of vegetative fuel loads using Landsat TM imagery in New South Wales, Australia. Int. J. Wildland Fire 2003, 12, 185–194.
[25]  Falkowski, M.J.; Gessler, P.E.; Morgan, P.; Hudak, A.T.; Smith, A.M.S. Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling. For. Ecol. Manage 2005, 217, 129–146.
[26]  Saatchi, S.; Halligan, K.; Despain, D.G.; Crabtree, R.L. Estimation of forest fuel load from radar remote sensing. IEEE Trans Geosci Remote Sens 2007, 45, 1726–1740.
[27]  Andersen, H.E.; McGaughey, R.J.; Reutebuch, S.E. Estimating forest canopy fuel parameters using LIDAR data. Remote Sens. Environ 2005, 94, 441–449.
[28]  Hudak, A.T.; Evans, J.S.; Smith, A.M.S. LiDAR utility for natural resource managers. Remote Sens 2009, 1, 934–951.
[29]  Kaartinen, H.; Hyypp?, J.; Yu, X.; Vastaranta, M.; Hyypp?, H.; Kukko, A.; Holopainen, M.; Heipke, C.; Hirschmugl, M.; Morsdorf, F.; et al. An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sens 2012, 4, 950–974.
[30]  Skowronski, N.; Clark, K.; Nelson, R.; Hom, J.; Patterson, M. Remotely sensed measurements of forest structure and fuel loads in the Pinelands of New Jersey. Remote Sens. Environ 2007, 108, 123–129.
[31]  Wang, L.; Gong, P.; Biging, G.S. Individual tree-crown delineation and tree top detection in high-spatial-resolution aerial imagery. Photogramm. Eng. Remote Sens 2004, 70, 351–357.
[32]  Katoh, M.; Gougeon, F.A. Improving the precision of tree counting by combining tree detection with crown delineation and classification on homogeneity guided smoothed high resolution (50 cm) multispectral airborne digital data. Remote Sens 2012, 4, 1411–1424.
[33]  Ke, Y.; Quackenbush, L.J. A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing. Int. J. Remote Sens 2011, 32, 4725–4747.
[34]  Shoshany, M. Satellite remote sensing of natural Mediterranean vegetation: A review within an ecological context. Prog. Phys. Geogr 2000, 24, 153–178.
[35]  Scarascia-Mugnozza, G.; Oswald, H.; Piussi, P.; Radoglou, K. Forests of the Mediterranean region: Gaps in knowledge and research needs. For. Ecol. Manage 2000, 132, 97–109.
[36]  Ozdemir, I.; Karnieli, A. Predicting forest structural parameters using the image texture derived from worldview-2 multispectral imagery in a dryland forest, Israel. Int. J. Appl. Earth Obs. Geoinf 2011, 13, 701–710.
[37]  Mallinis, G.; Koutsias, N.; Tsakiri-Strati, M.; Karteris, M. Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site. ISPRS J. Photogramm. Remote Sens 2008, 63, 237–250.
[38]  Mallinis, G.; Koutsias, N.; Makras, A.; Karteris, M. Forest parameters estimation in a European Mediterranean landscape using remotely sensed data. Forest Sci 2004, 50, 450–460.
[39]  Spanos, I.; Ganatsas, P.; Tsakaldimi, M. Evaluation of postfire restoration in suburban forest of Thessaloniki, Northern Greece. Global Nest J 2010, 12, 390–400.
[40]  Mitsopoulos, I. Crown Fire Analysis and Management in Aleppo pine (Pinus halepensis Mill.) Forests of GreecePh.D Thesis. Aristotle University, Thessaloniki, Greece, 2005.
[41]  Brown, J.K. Weight and Density of Crowns of Rocky Mountains Conifer; USDA, Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1978; p. 56.
[42]  Call, P.; Albini, F. Aerial and Surface Fuel Consumption in Crown Fires. Int. J. Wildland Fire 1997, 7, 259–264.
[43]  Goetz, S.J.; Wright, R.K.; Smith, A.J.; Zinecker, E.; Schaub, E. IKONOS imagery for resource management: Tree cover, impervious surfaces, and riparian buffer analyses in the mid-Atlantic region. Remote Sens. Environ 2003, 88, 195–208.
[44]  Key, T.; Warner, T.A.; McGraw, J.B.; Fajvan, M.A. A comparison of multispectral and multitemporal information in high spatial resolution imagery for classification of individual tree species in a temperate hardwood forest. Remote Sens. Environ 2001, 75, 100–112.
[45]  Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens 2004, 58, 239–258.
[46]  Hay, G.J.; Blaschke, T.; Marceau, D.J.; Bouchard, A. A comparison of three image-object methods for the multiscale analysis of landscape structure. ISPRS J. Photogramm. Remote Sens 2003, 57, 327–345.
[47]  Ma, H.; Qin, Q.; Shen, X. Shadow Segmentation and Compensation in High Resolution Satellite Images. Proceedings of 2008 IEEE International Geoscience and Remote Sensing Symposium, IGARSS ’08, Boston, MA, USA, 7–11 July 2008; pp. II-1036–II-1039.
[48]  Jing, L.; Hu, B.; Noland, T.; Li, J. An individual tree crown delineation method based on multi-scale segmentation of imagery. ISPRS J. Photogramm. Remote Sens 2012, 70, 88–98.
[49]  Leckie, D.G.; Gougeon, F.A.; Tinis, S.; Nelson, T.; Burnett, C.N.; Paradine, D. Automated tree recognition in old growth conifer stands with high resolution digital imagery. Remote Sens. Environ 2005, 94, 311–326.
[50]  Whiteside, T.G.; Boggs, G.S.; Maler, S.W. Extraction of tree crowns from high resolution imagery over Eucalypt dominant tropical savannas. Photogramm. Eng. Remote Sens 2011, 77, 813–824.
[51]  Ke, Y.; Quackenbush, L.J. A comparison of three methods for automatic tree crown detection and delineation from high spatial resolution imagery. Int. J. Remote Sens 2011, 32, 3625–3647.
[52]  Pouliot, D.A.; King, D.J.; Bell, F.W.; Pitt, D.G. Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Remote Sens. Environ 2002, 82, 322–334.
[53]  Zhang, W.; Quackenbush, L.J.; Im, J.; Zhang, L. Indicators for separating undesirable and well-delineated tree crowns in high spatial resolution images. Int. J. Remote Sens 2012, 33, 5451–5472.
[54]  Shaw, J.D. Models for Estimation and Simulation of Crown and Canopy Cover. Proceedings of 5th Annual Forest Inventory and Analysis Symposium, New Orleans, LA, USA, 18–20 November 2003; pp. 183–221.
[55]  Alexander, M.E.; Stefner, C.N.; Mason, J.A.; Stocks, B.J.; Hartley, G.R.; Maffey, M.E.; Wotton, B.M.; Taylor, S.W.; Lavoie, N.; Dalrymple, G.N. Characterizing the Jack Pine—Black Spruce Fuel Complex in the International Crown Fire Modelling Experiment (ICFME); Canadian Forest Service, Northern Forestry Centre: Edmonton, AB, Canada, 2004; p. 48.
[56]  Alexander, M.E. Fire Behaviour as a Factor in Forest and Rural Fire Suppression; Forest Research, Rotorua, in association with the National Rural Fire Authority, Wellington: Rotorua, New Zealand, 2000; p. 50.
[57]  Scott, J.H.; Reinhardt, E.D. Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Potential; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2001; p. 59.
[58]  Fulé, P.Z.; Covington, W.W.; Smith, H.B.; Springer, J.D.; Heinlein, T.A.; Huisinga, K.D.; Moore, M.M. Comparing ecological restoration alternatives: Grand Canyon, Arizona. For. Ecol. Manage 2002, 170, 19–41.
[59]  Stephens, S.L. Evaluation of the effects of silvicultural and fuels treatments on potential fire behaviour in Sierra Nevada mixed-conifer forests. For. Ecol. Manage 1998, 105, 21–35.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133