全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Openness as Visualization Technique for Interpretative Mapping of Airborne Lidar Derived Digital Terrain Models

DOI: 10.3390/rs5126427

Keywords: Lidar, airborne laser scanning, Openness, visualization, local relief model, sky-view factor, digital terrain model

Full-Text   Cite this paper   Add to My Lib

Abstract:

Openness is proposed as a visualization technique for the archaeological interpretation of digital terrain models derived from airborne laser scanning. In contrast to various shading techniques, openness is not subject to directional bias and relief features highlighted by openness do not contain any horizontal displacement. Additionally, it offers a clear distinction between relief features and the surrounding topography, while it highlights both the highest and lowest parts of features. This makes openness an ideal tool for mapping and outlining of archaeological features. A comparison with sky-view factor and local relief model visualizations helps to evaluate advantages and limits of the technique.

References

[1]  Devereux, B.J.; Amable, G.S.; Crow, P. Visualisation of LiDAR terrain models for archaeological feature detection. Antiquity 2008, 82, 470–479.
[2]  Doneus, M.; Briese, C. Full-Waveform Airborne Laser Scanning as a Tool for Archaeological Reconnaissance. In From Space to Place: 2. International Conference on Remote Sensing in Archaeology; Proceedings of the 2. International workshop, CNR, Rome, Italy, December 2–4, 2006; Campana, S., Forte, M., Eds.; Archaeopress: Oxford, UK, 2006; Volume 1568, pp. 99–106.
[3]  Bewley, R.H.; Crutchley, S.; Shell, C. New light on an ancient landscape: LiDAR survey in the Stonehenge World Heritage Site. Antiquity 2005, 79, 636–647.
[4]  Doneus, M.; Briese, C. Airborne Laser Scanning in Forested Areas - Potential and Limitations of an Archaeological Prospection Technique. Remote Sensing for Archaeological Heritage Management: Proceedings of the 11th EAC Heritage Management Symposium, Reykjavik, Iceland, 25–27 March 2010; Cowley, D., Ed.; Archaeolingua; EAC: Budapest, Hungary, 2011; 3, pp. 53–76.
[5]  Humme, A.; Lindenbergh, R.; Sueur, C. Revealing Celtic Fields from Lidar Data Using Kriging Based Filtering. Proceedings of the ISPRS Commission V Symposium “Image Engineering and Vision Metrology”, Dresden, Germany, 25–27 September 2006.
[6]  Hesse, R. LiDAR-derived Local Relief Models—A new tool for archaeological prospection. Archaeological Prospect 2010, 17, 67–72.
[7]  Zak?ek, K.; O?tir, K.; Kokalj, ?. Sky-view factor as a relief visualization technique. Remote Sens 2011, 3, 398–415.
[8]  Kokalj, ?.; Zak?ek, K.; O?tir, K. Visualizations of Lidar Derived Relief Models. In Interpreting Archaeological Topography: Airborne Laser Scanning, 3D Data and Ground Observation; Opitz, R.S., Cowley, D., Eds.; Oxbow Books: Oxford, UK, 2013; Volume 5, pp. 100–114.
[9]  Challis, K.; Forlin, P.; Kincey, M. A generic toolkit for the visualization of archaeological features on airborne LiDAR elevation data. Archaeol. Prospect 2011, 18, 279–289.
[10]  Bennett, R.; Welham, K.; Hill, R.A.; Ford, A. A comparison of visualization techniques for models created from airborne laser scanned data. Archaeol. Prospect 2012, 19, 41–48.
[11]  Yokoyama, R.; Sirasawa, M.; Pike, R.J. Visualizing topography by openness: A new application of image processing to digital elevation models. Photogramm. Eng. Remote Sens 2002, 68, 257–265.
[12]  Chiba, F.; Yokoyama, R. New Method to Generate Excavation Charts by Openness Operators. Proceedings of the 22nd CIPA Symposium, Kyoto, Japan, 11–15 October 2009; pp. 1–5.
[13]  Doneus, M. Die Hinterlassene Landschaft—Prospektion und Interpretation in der Landschaftsarch?ologie; Verl. der ?sterr. Akad. d. Wiss.: Vienna, Austria, 2013.
[14]  Doneus, M.; Kühtreiber, T. Landscape, the Individual, and Society: Subjective Expected Utilities in a Monastic Landscape near Mannersdorf am Leithagebirge, Lower Austria. In Historical Archaeology in Central Europe; Mehler, N., Ed.; Society for Historical Archaeology: Rockville, MD, USA, 2013; pp. 339–364.
[15]  Doneus, M.; Briese, C.; Fera, M.; Fornwagner, U.; Griebl, M.; Janner, M.; Zingerle, M.-C. Documentation and Analysis of Archaeological Sites Using Aerial Reconnaissance and Airborne Laser Scanning. Proceedings of the XXIst International Symposium CIPA: AntiCIPAting the Future of the Cultural Past, Athens, Greece, 1–6 October 2007; XXXVI-5/C53, pp. 275–280.
[16]  Trinks, I.; Neubauer, W.; Doneus, M. Prospecting Archaeological Landscapes. Progress in Cultural Heritage Preservation: 4th International Conference, EuroMed 2012, Limassol, Cyprus, October 29–November 3, 2012. Proceedings; Ioannides, M., Fritsch, D., Leissner, J., Davies, R., Remondino, F., Caffo, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7616, pp. 21–29.
[17]  Trinks, I.; Neubauer, W.; Nau, E.; Gabler, M.; Wallner, M.; Hinterleitner, A.; Biwall, A.; Doneus, M.; Pregesbauer, M. Archaeological prospection of the UNESCO World Cultural Heritage Site Birka-Hofg?rden. In Archaeological Prospection: Proceedings of the 10th International Conference—Vienna; Neubauer, W., Trinks, I., Salisbury, R.B., Einw?gerer, C., Eds.; Verl. der ?sterr. Akad. d. Wiss.: Vienna, Austria, 2013; pp. 39–40.
[18]  Mandlburger, G.; Hauer, C.; H?fle, B.; Habersack, H.; Pfeifer, N. Optimisation of lidar derived terrain models for river flow modelling. Hydrol. Earth Syst. Sci 2009, 13, 1453–1466.
[19]  Mandlburger, G.; Vetter, M.; Milenkovic, M.; Pfeifer, N. Derivation of a Countrywide River Network Based on Airborne Laser Scanning DEMs—Results of a Pilot Study. In MODSIM2011, 19th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, December 2011; Chan, F., Marinova, D., Anderssen, R., Eds.; The Modelling and Simulation Society of Australia and New Zealand Inc.: Perth, WA, Australia, 2011; pp. 2423–2429.
[20]  ZRC SAZU. Sky-View Factor Based Visualization, 2013. Available online: http://iaps.zrc-sazu.si/index.php?q=en/svf (accessed on 25 November 2013).
[21]  Hesse, R. Visualisierung hochaufl?sender digitaler Gel?ndemodelle mit LiVT. In eTopoi Journal of Ancient Studies; 2013. in review.
[22]  LiVT. Lidar Visualization Toolbox, 2013. Available online: http://sourceforge.net/projects/livt/ (accessed on 25 November 2013).
[23]  Pregesbauer, M. Object versus Pixel—Classification Techniques for High Resolution Airborne Remote Sensing Data. In Archaeological Prospection: Proceedings of the 10th International Conference—Vienna; Neubauer, W., Trinks, I., Salisbury, R.B., Einw?gerer, C., Eds.; Verl. der ?sterr. Akad. d. Wiss.: Vienna, Austria, 2013; pp. 200–202.
[24]  van Leusen, M. Visibility and the Landscape: An Exploration of GIS Modelling Techniques? [Enter the Past]: The E-Way into the Four Dimensions of Cultural Heritage; CAA 2003; Computer Applications and Quantitative Methods in Archaeology; Proceedings of the 31st Conference, Vienna, Austria, April 2003; Fischer Ausserer, K., B?rner, W., Goriany, M., Karlhuber-V?ckl, L., Eds.; Archaeopress: Oxford, UK, 2004; 1227, pp. 1–15. [CD].
[25]  Llobera, M. Building Past Landscape Perception with GIS: Understanding Topographic Prominence. J. Archaeol. Sci 2001, 28, 1005–1014.
[26]  Kokalj, ?.; Zak?ek, K.; O?tir, K. Application of sky-view factor for the visualisation of historic landscape features in lidar-derived relief models. Antiquity 2011, 85, 263–273.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133