全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Airborne Thermal Data Identifies Groundwater Discharge at the North-Western Coast of the Dead Sea

DOI: 10.3390/rs5126361

Keywords: thermal discharge plume, groundwater discharge, submarine springs, seeping?springs, terrestrial springs, airborne thermal remote sensing

Full-Text   Cite this paper   Add to My Lib

Abstract:

A qualitative and quantitative monitoring of groundwater discharge was conducted based on an airborne thermal campaign undertaken along the north-western coast of the Dead Sea in January 2011 to contribute to the relatively scarce information on groundwater discharge to date in the region. The application of airborne thermal data exploits thermal contrasts that exist between discharging groundwater and background sea surface temperatures of the Dead Sea. Using these contrasts, 72 discharge sites were identified from which only 42 were known from previous in situ measurements undertaken at terrestrial springs by the Israel Hydrological Service. Six of these sites represent submarine springs and at a further 24 locations groundwater appears to seep through the sediment. Although the abundance of groundwater seepage sites suggests a significant, but so far unknown groundwater source, the main contribution appears to originate from terrestrial springs. In an attempt to provide a quantitative approach for terrestrial springs, a linear bootstrap regression model between in situ spring discharge and respective thermal discharge plumes (r 2 = 0.87 p < 0.001) is developed and presented here. While the results appear promising and could potentially be applied to derive discharge values at unmonitored sites, several influence factors need to be clarified before a robust and reliable model to efficiently derive a complete quantitative picture of groundwater discharge can be proposed.

References

[1]  Feitelson, E. Political economy of groundwater exploitation: The Israeli case. Int. J. Water Resour. Dev 2005, 21, 413–423.
[2]  Weinberger, G.; Livshitz, Y.; Givati, A.; Zilberbrand, M.; Tal, A.; Weiss, M.; Zurieli, A. The Natural Water Resources between the Mediterranean Sea and the Jordan River; Israel Hydrological Service: Jerusalem, Palestine, 2012; p. 63.
[3]  Seward, P.; Xu, Y.; Brendonck, L. Sustainable groundwater use, the capture principle, and adaptive management. Water SA 2006, 32, 473–482.
[4]  Laronne Ben-Itzhak, L.; Gvirtzman, H. Groundwater flow along and across structural folding: An example from the Judean desert, Israel. J. Hydrol 2005, 312, 51–69.
[5]  Lensky, N.G.; Dvorkin, Y.; Lyakhovsky, V.; Gertman, I.; Gavrieli, I. Water, salt, and energy balances of the Dead Sea. Water Resour. Res. 2005, 41, doi:10.1029/2005wr004084.
[6]  Stiller, M.; Chung, Y.C. Radium in the Dead Sea: A possible tracer for the duration of meromixis. Limnol. Oceanogr 1984, 29, 574–586.
[7]  Galili, U. Summary of Hydrometric Measurements in Ein Fesh’ha during the years 2003–2011. In IHS Report Hydro 1/2012 (in Hebrew). Unpublished;; Israel Hydrological Service: Jerusalem, Palestine, 2012; p. 34.
[8]  Ionescu, D.; Siebert, C.; Polerecky, L.; Munwes, Y.Y.; Lott, C.; H?usler, S.; Bi?i?-Ionescu, M.; Quast, C.; Peplies, J.; Gl?ckner, F.O.; et al. Microbial and chemical characterization of underwater fresh water springs in the Dead Sea. PLoS One 2012, 7, doi:10.1371/journal.pone.0038319.
[9]  Akawwi, E.; Al-Zouabi, A.; Kakish, M.; Koehn, F.; Sauter, M. Using thermal infrared imagery (tir) for illustrating the submarine groundwater discharge into the eastern shoreline of the Dead Sea-Jordan. Am. J. Environ. Sci 2008, 4, 693–700.
[10]  Lewandowski, J.; Meinikmann, K.; Ruhtz, T.; P?schke, F.; Kirillin, G. Localization of lacustrine groundwater discharge (lgd) by airborne measurement of thermal infrared radiation. Remote Sens. Environ 2013, 138, 119–125.
[11]  Mejías, M.; Ballesteros, B.J.; Antón-Pacheco, C.; Domínguez, J.A.; Garcia-Orellana, J.; Garcia-Solsona, E.; Masqué, P. Methodological study of submarine groundwater discharge from a karstic aquifer in the Western Mediterranean Sea. J. Hydrol. 2012, 464–465, 27–40.
[12]  Shaban, A.; Khawalie, M.; Abdallah, C.; Faour, G. Geologic controls of submarine groundwater discharge: Application of remote sensing to North Lebanon. Environ. Geol 2005, 47, 512–522.
[13]  Mallast, U.; Siebert, C.; Wagner, B.; Sauter, M.; Gloaguen, R.; Geyer, S.; Merz, R. Localisation and temporal variability of groundwater discharge into the Dead Sea using thermal satellite data. Environ. Earth Sci 2013, 69, 587–603.
[14]  Danielescu, S.; MacQuarrie, K.T.B.; Faux, R.N. The integration of thermal infrared imaging, discharge measurements and numerical simulation to quantify the relative contributions of freshwater inflows to small estuaries in atlantic canada. Hydrol. Process 2009, 23, 2847–2859.
[15]  Johnson, A.G.; Glenn, C.R.; Burnett, W.C.; Peterson, R.N.; Lucey, P.G. Aerial infrared imaging reveals large nutrient-rich groundwater inputs to the ocean. Geophys. Res. Lett 2008, 35, 15601–15606.
[16]  Roseen, R.M. Quantifying Groundwater Discharge Using Thermal Imagery and Conventional Groundwater Exploration Techniques for Estimating the Nitrogen Loading to a Meso-Scale Inland EstuaryPh.D. Thesis. University of New Hampshire, Durham, NH, USA, 2002.
[17]  Gardosh, M.; Reches, Z.E.; Garfunkel, Z. Holocene tectonic deformation along the western margins of the Dead Sea. Tectonophysics 1990, 180, 123–137.
[18]  Guttman, Y. Hydrogeology of the Eastern Aquifer in the Judea Hills and Jordan Valley; Mekorot: Tel Aviv, Israel, 2000; p. 83.
[19]  Enzel, Y.; Kadan, G.; Eyal, Y. Holocene earthquakes inferred from a fan-delta sequence in the Dead Sea graben. Quat. Res 2000, 53, 34–48.
[20]  Hact, A.; Gertman, I. Dead Sea Meteorological Climate. Nevo, E., Oren, A., Wasser, S.P., Eds.; University of Haifa: Haifa, Israel, 2003; p. 361.
[21]  Munwes, Y.; Laronne, J.B.; Geyer, S.; Siebert, C.; Sauter, M.; Licha, T. Direct Measurement of Submarine Groundwater Spring Discharge Upwelling into the Dead Sea. Proceedings of Integrated Water Resources Management (IWRM), Karlsruhe, German, 24–25 November 2010.
[22]  Shalev, E.; Shaliv, G.; Yechieli, Y. Hydrogeology of the Southern Dead Sea Basin (the Area of the Evaporation Ponds of the Dead Sea Works); Geological Survey of Israel: Jerusalem, Palestine, 2009.
[23]  Vengosh, A.; Hening, S.; Ganor, J.; Mayer, B.; Weyhenmeyer, C.E.; Bullen, T.D.; Paytan, A. New isotopic evidence for the origin of groundwater from the nubian sandstone aquifer in the Negev, Israel. Appl. Geochem 2007, 22, 1052–1073.
[24]  IHS. Spring Discharge Measurements along the Dead Sea; Israel Hydrological Service: Jerusalem, Palestine, 2012. (Unpublished Data).
[25]  Galili, U.; Hillel, N.; Mallast, U. Method of Measuring Spring DischargePersonal Communication. 11, September, 2012.
[26]  Ruefenacht, B.; Vanderzanden, D.; Morrison, M. New Technique for Segmenting Images; USDA Forest Service Remote Sensing Application Center: Salt Lake City, UT, USA, 2002.
[27]  Vachtman, D.; Laronne, J.B. Hydraulic geometry of cohesive channels undergoing base level drop. Geomorphology 2013, 197, 76–84.
[28]  Wust-Bloch, G.H.; Joswig, M. Pre-collapse identification of sinkholes in unconsolidated media at Dead Sea area by “nanoseismic monitoring” (graphical jackknife location of weak sources by few, low-SNR records). Geophys. J. Int 2006, 167, 1220–1232.
[29]  Yechieli, Y.; Wachs, D.; Abelson, M.; Crouvi, O.; Shtivelman, V.; Raz, E.; Gideon, B. Formation of sinkholes along the shores of the Dead Sea—Summary of the first stage of investigation. GSI Curr. Res 2002, 13, 1–6.
[30]  Kiro, Y.; Yechieli, Y.; Lyakhovsky, V.; Shalev, E.; Starinsky, A. Time response of the water table and saltwater transition zone to a base level drop. Water Resour. Res 2008, 44, 12441–12415.
[31]  Yechieli, Y.; Shalev, E.; Wollman, S.; Kiro, Y.; Kafri, U. Response of the Mediterranean and Dead Sea coastal aquifers to sea level variations. Water Resour. Res 2010, 46, 12551–12511.
[32]  Vollmer, M. Newton’s law of cooling revisited. Eur. J. Physics 2009, 30, 1063–1084.
[33]  Lee, J.H.W.; Chu, V. Turbulent Jets and Plumes: A Lagrangian Approach; Kluwer Academics Publishers: Dordrecht, The Netherlands, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133