全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Improved Image Fusion Approach Based on Enhanced Spatial and Temporal the Adaptive Reflectance Fusion Model

DOI: 10.3390/rs5126346

Keywords: image fusion, reflectance, Landsat, MODIS

Full-Text   Cite this paper   Add to My Lib

Abstract:

High spatiotemporal resolution satellite imagery is useful for natural resource management and monitoring for land-use and land-cover change and ecosystem dynamics. However, acquisitions from a single satellite can be limited, due to trade-offs in either spatial or temporal resolution. The spatial and temporal adaptive reflectance fusion model (STARFM) and the enhanced STARFM (ESTARFM) were developed to produce new images with high spatial and high temporal resolution using images from multiple sources. Nonetheless, there were some shortcomings in these models, especially for the procedure of searching spectrally similar neighbor pixels in the models. In order to improve these models’ capacity and accuracy, we developed a modified version of ESTARFM (mESTARFM) and tested the performance of two approaches (ESTARFM and mESTARFM) in three study areas located in Canada and China at different time intervals. The results show that mESTARFM improved the accuracy of the simulated reflectance at fine resolution to some extent.

References

[1]  Hilker, T.; Wulder, M.A.; Coops, N.C.; Seitz, N.; White, J.C.; Gao, F.; Masek, J.G.; Stenhouse, G. Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. Remote Sens. Environ 2009, 113, 1988–1999.
[2]  Pohl, C.; van Genderen, J.L. Multisensor image fusion in remote sensing: concepts, methods and applications. Int. J. Remote Sens 1998, 19, 823–854.
[3]  Camps-Valls, G.; Gomez-Chova, L.; Munoz-Mari, J.; Rojo-Alvarez, J.L.; Martinez-Ramon, M. Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection. IEEE Trans. Geosci. Remote Sens 2008, 46, 1822–1835.
[4]  Bhandari, S.; Phinn, S.; Gill, T. Preparing Landsat Image Time Series (LITS) for monitoring changes in vegetation phenology in Queensland, Australia. Remote Sens 2012, 4, 1856–1886.
[5]  Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens 2006, 44, 2207–2218.
[6]  Zhu, X.L.; Chen, J.; Gao, F.; Chen, X.H.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ 2010, 114, 2610–2623.
[7]  Chen, J.; Zhu, X.; Vogelmann, J.E.; Gao, F.; Jin, S. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sens. Environ 2011, 115, 1053–1064.
[8]  Metwalli, M.R.; Nasr, A.H.; Allah, O.S.F.; El-Rabaie, S.; Abd El-Samie, F.E. Satellite image fusion based on principal component analysis and high-pass filtering. J. Opt. Soc. Am. A 2010, 27, 1385–1394.
[9]  Naidu, V.P.S.; Raol, J.R. Pixel-level image fusion using wavelets and principal component analysis. Def. Sci. J 2008, 58, 338–352.
[10]  Riasati, V.R.; Zhou, H. Reduced data projection slice image fusion using principal component analysis. Proc. SPIE 2005, 5813, 1–15.
[11]  Choi, M. A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter. IEEE Trans. Geosci. Remote Sens 2006, 44, 1672–1682.
[12]  Tu, T.-M.; Su, S.-C.; Shyu, H.-C.; Huang, P.S. Efficient intensity-hue-saturation-based image fusion with saturation compensation. Opt. Eng 2001, 40, 720–728.
[13]  Zhang, Y. Understanding image fusion. Photogramm. Eng. Remote Sens 2004, 70, 657–661.
[14]  Nunez, J.; Otazu, X.; Fors, O.; Prades, A.; Pala, V.; Arbiol, R. Multiresolution-based image fusion with additive wavelet decomposition. IEEE Trans. Geosci. Remote Sens 1999, 37, 1204–1211.
[15]  Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; McDermid, G.; Masek, J.G.; Gao, F.; White, J.C. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens. Environ 2009, 113, 1613–1627.
[16]  Watts, J.D.; Powell, S.L.; Lawrence, R.L.; Hilker, T. Improved classification of conservation tillage adoption using high temporal and synthetic satellite imagery. Remote Sens. Environ 2011, 115, 66–75.
[17]  Huang, B.; Wang, J.; Song, H.; Fu, D.; Wong, K. Generating high spatiotemporal resolution land surface temperature for urban heat island monitoring. IEEE Geosci. Remote Sens. Lett 2013, 10, 1–5.
[18]  Singh, D. Generation and evaluation of gross primary productivity using Landsat data through blending with MODIS data. Int. J. Appl. Earth Obs. Geoinf 2011, 13, 59–69.
[19]  Chen, B.; Ge, Q.; Fu, D.; Yu, G.; Sun, X.; Wang, S.; Wang, H. A data-model fusion approach for upscaling gross ecosystem productivity to the landscape scale based on remote sensing and flux footprint modelling. Biogeosciences 2010, 7, 2943–2958.
[20]  Shen, H.; Wu, P.; Liu, Y.; Ai, T.; Wang, Y.; Liu, X. A spatial and temporal reflectance fusion model considering sensor observation differences. Int. J. Remote Sens 2013, 34, 4367–4383.
[21]  Emelyanova, I.V.; McVicar, T.R.; Van Niel, T.G.; Li, L.T.; van Dijk, A.I.J.M. Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection. Remote Sens. Environ 2013, 133, 193–209.
[22]  Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr 1970, 46, 234–240.
[23]  Liu, Y.F.; Yu, G.R.; Wen, X.F.; Wang, Y.H.; Song, X.; Li, J.; Sun, X.M.; Yang, F.T.; Chen, Y.R.; Liu, Q.J. Seasonal dynamics of CO2 fluxes from subtropical plantation coniferous ecosystem. Sci. China Ser. D 2006, 49, 99–109.
[24]  Huang, M.; Ji, J.J.; Li, K.R.; Liu, Y.F.; Yang, F.T.; Tao, B. The ecosystem carbon accumulation after conversion of grasslands to pine plantations in subtropical red soil of south China. Tellus B 2007, 59, 439–448.
[25]  Richardson, A.D.; Hollinger, D.Y.; Burba, G.G.; Davis, K.J.; Flanagan, L.B.; Katul, G.G.; Munger, J.W.; Ricciuto, D.M.; Stoy, P.C.; Suyker, A.E.; Verma, S.B.; Wofsy, S.C. A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes. Agric. For. Meteorol 2006, 136, 1–18.
[26]  Yuan, F.; Arain, M.A.; Barr, A.G.; Black, T.A.; BOURQUE, C.P.A.; Coursolle, C.; Margolis, H.A.; McCAUGHEY, J.H.; Wofsy, S.C. Modeling analysis of primary controls on net ecosystem productivity of seven boreal and temperate coniferous forests across a continental transect. Glob. Change Biol 2008, 14, 1765–1784.
[27]  Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett 2006, 3, 68–72.
[28]  Irish, R.R.; Barker, J.L.; Goward, S.N.; Arvidson, T. Characterization of the Landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm. Photogramm. Eng. Remote Sens 2006, 72, 1179–1188.
[29]  Irish, R.R. Landsat 7 automatic cloud cover assessment. Proc. SPIE 2000, 4049, 348–355.
[30]  Wulder, M.A.; Dechka, J.A.; Gillis, M.A.; Luther, J.E.; Hall, R.J.; Beaudoin, A. Operational mapping of the land cover of the forested area of Canada with Landsat data: EOSD land cover program. For. Chron 2003, 79, 1075–1083.
[31]  Wulder, M.A.; White, J.C.; Magnussen, S.; McDonald, S. Validation of a large area land cover product using purpose-acquired airborne video. Remote Sens. Environ 2007, 106, 480–491.
[32]  Yunqiang, Z.; Runda, L.; Min, F.; Song, J. Research on Earth System Scientific Data Sharing Platform Based on SOA. Proceedings of WRI World Congress on Software Engineering, 2009, WCSE’09, Los Angeles, CA, USA, 19–21 May 2009; 1, pp. 77–83.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133