Antarctica is surrounded by a variety of large, medium and small sized ice shelves, glacier tongues and coastal areas without offshore floating ice masses. We used the mosaic of the Radarsat-1 Antarctica Mapping Project (RAMP) Antarctic Mapping Mission 1 (AMM) to classify the coastline of Antarctica in terms of surface structure patterns close to the calving front. With the aid of an automated edge detection method, complemented by manual control, the surface structures of all ice shelves and glacier tongues around Antarctica were mapped. We found dense and less dense patterns of surface structures unevenly distributed over the ice shelves and ice tongues. Dense surface patterns are frequent on fast flowing ice masses (ice streams), whereas most ice shelves show a dense surface pattern only close to the grounding line. Flow line analyses on ten ice shelves reveal that the time of residence of the ice along a flow path and—associated with it—the healing of surface crevasses can explain the different surface structure distribution close to the grounding line and the calving front on many ice shelves. Based on the surface structures relative to the calving front within a 15 km-wide seaward strip, the ice shelf fronts can be separated into three classes. The resulting map of the classified calving fronts around Antarctica and their description provide a detailed picture of crevasse formation and the observed dominant iceberg shapes.
References
[1]
Paterson, W. The Physics of Glaciers, 3 ed. ed.; Butterworth Heinemann: Oxford, UK, 1994; p. 480.
[2]
Jacobs, S.S.; Hellmer, H.H.; Doake, C.S.M.; Jenkins, A.; Frolich, R.M. Melting of ice shelves and the mass balance of Antarctica. J. Glaciol 1992, 38, 375–387.
[3]
Benn, D.I.; Warren, C.R.; Mottram, R.H. Calving processes and the dynamics of calving glaciers. Earth Sci. Rev 2007, 82, 143–179.
[4]
Rignot, E.; Jacobs, S.S.; Mouginot, J.; Scheuchl, B. Ice-shelf melting around Antarctica. Science 2013, 341, 266–270.
[5]
Depoorter, M.A.; Bamber, J.L.; Griggs, J.A.; Lenaerts, J.T.M.; M., L.S.R.; van den Broecke, M.R.; Moholdt, G. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 2013, 502, 89–92.
[6]
Oerter, H.; Kipfstuhl, J.; Determann, J.; Miller, H.; Wagenbach, D.; Minikin, A.; Graf, W. Evidence for basal marine ice in the Filchner-Ronne Ice Shelf. Nature 1992, 358, 399–401.
[7]
Craven, M.; Allison, I.; Fricker, H.A.; Warner, R. Properties of a marine ice layer under the Amery Ice Shelf, East Antarctica. J. Glaciol 2009, 55, 717–728.
[8]
Pattyn, F.; Matsuoka, K.; Callens, D.; Conway, H.; Depoorter, M.; Docquier, D.; Hubbard, B.; Samyn, D.; Tison, J.L. Melting and refreezing beneath Roi Baudouin Ice Shelf (East Antarctica) inferred from radar, GPS, and ice core data. J. Geophys. Res 2012, 117, 1–8.
[9]
Jansen, D.; Luckman, A.; Kulessa, B.; Holland, P.R.; King, E.C. Marine ice formation in a suture zone on the Larsen C Ice Shelf and its influence on ice shelf dynamics. J. Geophys. Res 2013, 118, 1–13.
[10]
Silva, T.A.M.; Bigg, G.R.; Nicholls, K.W. Contribution of giant icebergs to the Southern Ocean freshwater flux. J. Geophys. Res 2006, 111, 1–8.
[11]
Jansen, D.; Schodlok, M.; Rack, W. Basal melting of A-38B: A physical model constrained by satellite observations. Remote Sens. Environ 2007, 111, 195–203.
[12]
Holt, T.O.; Glasser, N.F.; Quincey, D.J.; Siegfried, M.R. Speedup and fracturing of George VI Ice Shelf, Antarctic Peninsula. The Cryosphere 2013, 7, 797–816.
[13]
Glasser, N.F.; Scambos, T. A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse. J. Glaciol 2008, 54, 3–16.
[14]
Sergienko, O. Basal melt channels on ice shelves. J. Geophys. Res 2013, 118, 1–14.
[15]
Luckman, A.; Jansen, D.; Kulessa, B.; King, E.; Sammonds, P.; Benn, D. Basal crevasses in Larsen C Ice Shelf and implications for their global abundance. The Cryosphere 2012, 6, 113–123.
[16]
McGrath, D.; Steffen, K.; Scambos, T.; Rajaram, H.; Casassa, G.; Lagos, J.R. Basal crevasses and associated surface crevassing on Larsen C Ice Shelf, Antarctica, and their role in ice-shelf instalbility. Ann. Glaciol 2012, 58, 10–14.
[17]
Humbert, A.; Steinhage, D. The evolution of the western rift area of the Fimbul Ice Shelf, Antarctica. The Cryosphere 2011, 5, 931–944.
[18]
Dowdeswell, J.A. On the nature of Svalbard icebergs. J. Glaciol 1989, 35, 224–234.
[19]
Jezek, K.; Sohn, H.; Noltimier, K. The Radarsat Antarctic Mapping Project. Proceedings of 1998 IEEE International Geoscience and Remote Sensing Symposium Proceedings, IGARSS ’98, Seattle, WA, USA, 6–10 July 1998; 5, pp. 2462–2464.
[20]
Oliver, C.; Quegan, S. Understanding Synthetic Aperture Radar Images; Artech House: Boston, MA, USA, 1998; p. 479.
[21]
Septhon, A.; Brown, L.; Macklin, J.T.; Partington, K.C.; Veck, N.; Rees, W. Segmentation of Synthetic-Aperture Radar imagery of sea ice. Int. J. Remote Sens 1994, 15, 803–825.
[22]
Young, N.W.; Turner, D.; Hyland, G.; Williams, R.N. Near-coastal iceberg distribution in East Antartica, 50–145°E. Ann. Glaciol 1998, 27, 68–74.
[23]
Haran, T.; Bohlander, J.; Scambos, T.; Painter, T.; Fahnestock, M. MODIS Mosaic of Antarctica (MOA) Image Map; National Snow and Ice Data Center: Boulder, CO, USA, 2005.
[24]
Rees, W.G. Remote Sensing of Snow and Ice; Taylor & Francis: Boca Raton, FL, USA, 2006.
[25]
Wesche, C.; Dierking, W. Iceberg signatures and detection in SAR images in two test regions of the Weddell Sea, Antarctica. J. Glaciol 2012, 58, 325–339.
[26]
Lopes, A.; Touzi, R.; Nezry, E. Adaptive speckle filters and scene heterogeneity. IEEE Trans. Geosci. Remote Sens 1990, 28, 992–1000.
[27]
Willis, C.J.; Macklin, J.T.; Partington, K.C.; Teleki, K.A.; Rees, W.G.; Williams, R.G. Iceberg detection using ERS-1 Synthetic Aperture Radar. Int. J. Remote Sens 1996, 17, 1777–1795.
[28]
Lazzara, M.A.; Jezek, K.C.; Scambos, T.A.; MacAyeal, D.R.; van der Veen, C.J. On the recent calving of icebergs from the Ross ice shelf. Polar Geogr 2008, 31, 15–26.
[29]
Derradji-Aouat, A.; Evgin, E. A constitutive model for isotropic freshwater ice. Can. Geotech. J 2001, 38, 818–827.
[30]
Mouginot, J.; Scheuchl, B.; Rignot, E. Mapping of ice motion in Antarctica using Synthetic Aperture Radar data. Remote Sens 2012, 4, 2753–2767.
[31]
Rignot, E.; Mouginot, J.; Scheuchl, B. MEaSUREs InSAR-Based Antarctica Ice Velocity Map; National Snow and Ice Data Center: Boulder, CO, USA, 2011.
[32]
Lenaerts, J.T.M.; van den Broecke, M.R.; van de Berg, W.J.; van Meijgaard, E.; Munneke, P.K. A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys. Res. Lett 2012, 39, 1–5.
[33]
Glasser, N.F.; Gudmundsson, G. Longitudinal surface structures (flowstripes) on Antarctic glacier. The Cryosphere 2012, 6, 383–391.
[34]
Hughes, T. On the disintegration of ice shelves: The role of fracture. J. Glaciol 1983, 29, 98–117.
[35]
Bassis, J.; Fricker, H.A.; Coleman, R.; Minster, J.B. An investigation into the forces that drives ice-shelf rift propagation on the Amery Ice Shelf, East Antarctica. J. Glaciol 2008, 54, 17–27.
[36]
Fricker, H.A.; Young, N.W.; Allison, I.; Coleman, R. Iceberg calving from the Amery Ice Shelf, East Antarctica. Ann. Glaciol 2002, 34, 241–246.
[37]
Stephen, H.; Long, D. Study of Iceberg B10A Using Scatterometer Data. Proceedings of IEEE 2000 International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 24–28 July 2000; pp. 1340–1342.
[38]
Gladstone, R.M.; Bigg, G.R.; Nicholls, K.W. Iceberg trajectory modeling and meltwater injection in the Southern Ocean. J. Geophys. Res 2001, 106, 19903–19915.