In 2012, we developed a proof-of-concept system for a new open-path laser absorption spectrometer concept for measuring atmospheric CO 2. The measurement approach utilizes high-reliability all-fiber-based, continuous-wave laser technology, along with a unique all-digital lock-in amplifier method that, together, enables simultaneous transmission and reception of multiple fixed wavelengths of light. This new technique, which utilizes very little transmitted energy relative to conventional lidar systems, provides high signal-to-noise (SNR) measurements, even in the presence of a large background signal. This proof-of-concept system, tested in both a laboratory environment and a limited number of field experiments over path lengths of 680 m and 1,600 m, demonstrated SNR values >1,000 for received signals of ~18 picoWatts averaged over 60 s. A SNR of 1,000 is equivalent to a measurement precision of ±0.001 or ~0.4 ppmv. The measurement method is expected to provide new capability for automated monitoring of greenhouse gas at fixed sites, such as carbon sequestration facilities, volcanoes, the short- and long-term assessment of urban plumes, and other similar applications. In addition, this concept enables active measurements of column amounts from a geosynchronous orbit for a network of ground-based receivers/stations that would complement other current and planned space-based measurement capabilities.
References
[1]
Dobler, J.T. A novel Approach for Active Measurement of Atmospheric Greenhouse Gases from a Geostationary Orbit. Proceeding of 93rd American Meteorological Society Annual Meeting, Austin, TX, USA, 9 January 2013.
[2]
Dobler, J.T.; Harrison, F.W.; Browell, E.V.; Lin, B.; McGregor, D.P.; Kooi, S.A.; Choi, Y.; Ismail, S. Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar. Appl. Opt 2013, 52, 2874–2892.
[3]
Dobbs, M.E.; Sharp, W.E.; Browell, E.V.; Zaccheo, T.S.; Moore, B., III. A Sinusoidal Modulated CW Integrated Path Differential Absorption Lidar for Mapping Sources and Sinks of Carbon Dioxide from Space. Proceeding of 14th Coherent Laser Radar Conference, Snowmass, CO, USA, 8–13 July 2007.
[4]
Dobler, J.T.; Nagel, J.A.; Temyanko, V.L.; Zaccheo, T.S.; Browell, E.V.; Harrison, F.W.; Kooi, S.A. Advancements in a Multifunctional Fiber Laser Lidar for Measuring Atmospheric CO2 and O2. Proceedings of the 16th Symposium on Meteorological Observation and Instrumentation, 92nd AMS Annual Meeting, New Orleans, LA, USA, 22–26 January 2012.
[5]
Dobbs, M.E.; Dobler, J.T.; Braun, M.G.; McGregor, D.P.; Overbeck, J.A.; Moore, B., III; Browell, E.V.; Zaccheo, T.S. A Modulated CW Fiber Laser-Lidar Suite for the ASCENDS Mission. Proceeding of 24th International Laser Radar Conference, Boulder, CO, USA, 24–29 July 2008.
[6]
National Research Council. Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond; The National Academies Press: Washington, DC, USA, 2007.
[7]
Van Well, B.; Murray, S.; Hodgkinson, J.; Pride, R.; Strzoda, R.; Gibson, G.; Padgett, M. An open-path, hand-held laser system for the detection of methane gas. J. Opt. A Pure Appl. Opt 2005, 7, doi:10.1088/1464-4258/7/6/025.
[8]
Michel, A.P.M.; Liu, P.Q.; Yeung, J.K.; Corrigan, P.; Baeck, M.L.; Wang, Z.; Day, T.; Moshary, F.; Gmachl, C.F.; Smith, J.A. Quantum cascade laser open-path system for remote sensing of trace gases in Beijing, China. Opt. Eng. 2010, 49, doi:10.1117/1.3509316.
[9]
Somesfalean, G.; Alris, J.; Gustafsson, U.; Edner, H.; Svanberg, S. Long-path monitoring of NO2 with a 635 nm diode laser using frequency-modulation spectroscopy. Appl. Opt 2005, 44, 5148–5151.
[10]
Buchholz, B.; Kühnreich, B.; Smit, H.G.J.; Ebert, V. Validation of an extractive, airborne, compact TDL spectrometer for atmospheric humidity sensing by blind intercomparison. Appl. Phys. B 2013, 110, 249–262.
[11]
Petrov, K.P.; Curl, R.F.; Tittel, F.K. Compact difference-frequency spectrometer for multicomponent trace gas detection. Appl. Phys. B 1998, 66, 531–538.
[12]
Brooke, J.S.A.; Bernath, P.F.; Kirchengast, G.; Thomas, C.B.; Wang, J.G.; Tereszchuk, K.A.; Abad, G.G.; Hargreaves, R.J.; Beal, C.A.; Harrison, J.J.; et al. Greenhouse gas measurements over a 144 km open path in the Canary Islands. Atmos. Meas. Tech. Discuss 2012, 5, 2309–2319.
[13]
Sch?fer, K.; Grant, R.H.; Emeis, S.; Raabe, A.; von der Heide, C.; Schmid, H.P. Areal-averaged trace gas emission rates from long-range open-path measurements in stable boundary layer conditions. Atmos. Meas. Tech. Discuss 2012, 5, 1459–1496.
[14]
Zahniser, M.S.; Nelson, D.D.; McManus, J.B.; Kebabian, P.L. Measurement of trace gas fluxes using tunable diode laser spectroscopy [and discussion]. Phil. Trans. R. Soc. Lond. A 1995, 351, 371–382.
[15]
Braun, M.G.; Dobler, J.T. Remote Absorption Spectroscopy by Coded TransmissionUS Patent Application EP2587236 A1. 1, May, 2013.
[16]
SRS Application Note #3. About Lock-in Amplifiers; Stanford Research Systems: Sunnyvale, CA, USA. Available online: http://thinksrs.com/downloads/PDFs/ApplicationNotes/AboutLIAs.pdf (accessed on 8 August 2013).
[17]
Measures, R.M. Laser Remote Sensing: Fundamentals and Applications; Wiley: New York, NY, USA, 1984.
[18]
Menzies, R.; Tratt, D.M. Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: Selection of optimum sounding frequencies for high precision measurements. Appl. Opt 2003, 42, 6569–6577.
[19]
Ehret, G.; Kiemle, C.; Wirth, M.; Amediek, A.; Fix, A.; Houweling, S. Spaceborne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: A sensitivity analysis. Appl. Phys. B 2008, 90, 593–608.
[20]
Amediek, A.; Fix, A.; Wirth, M.; Ehret, G. Development of an OPO system at 1:57 μm for integrated path DIAL measurement of atmospheric carbon dioxide. Appl. Phys B 2008, 92, 295–302.
[21]
Kameyama, S.; Imaki, M.; Hirano, Y.; Ueno, S.; Sakaizawa, D.; Kawakami, S.; Nakajima, M. Development of 1:6 μm continuous- wave modulation hard-target differential absorption lidar system for CO2 sensing. Opt. Lett 2009, 34, 1513–1515.
[22]
Abshire, J.B.; Riris, H.; Allan, G.R.; Weaver, C.J.; Mao, J.; Sun, X.; Hasselbrack, W.E.; Kawa, S.R.; Biraud, S. Pulsed airborne lidar measurements of atmospheric CO2 column absorption. Tellus B 2010, 62, 770–783.
[23]
Kameyama, S.; Imaki, M.; Hirano, Y.; Ueno, S.; Kawakami, S.; Sakaizawa, D.; Kimura, T.; Nakajima, M. Feasibility study on 1:6 μm continuous-wave modulation laser absorption spectrometer system for measurement of global CO2 concentration from a satellite. Appl. Opt 2011, 50, 2055–2068.
[24]
Jacobs, G.B.; Snowman, L.R. Laser techniques for air pollutionm measurement. IEEE J. Quantum Electron 1967, 3, 603–605.
[25]
Ismail, S.; Browell, E.V. Airborne and spaceborne lidar measurements of water vapor profiles: A sensitivity analysis. Appl. Opt 1989, 28, 3603–3615.
[26]
Clough, S.A.; Shephard, M.W.; Mlawer, E.J.; Delamere, J.S.; Iacono, M.J.; Cady-Pereira, K.; Boukabara, S.; Brown, P.D. Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf 2005, 91, 233–244.
[27]
Anderson, G.P.; Chetwynd, J.H.; Bernstein, L.S.; Berk, A.; Acharya, P.K.; Robertson, D.C.; Shettle, E.P. System and Method for Modelling Moderate Resolution Atmospheric PropagationUS Patent 5,884,226. 16, March, 1999.
[28]
Berk, A.S.; Acharya, P.K.; Bernstein, L.S.; Anderson, G.P.; Lewis, P.; Chetwynd, J.H.; Hoke, M.L. Band Model Method for Modeling Atmospheric Propagation at Arbitrarily Fine Spectral ResolutionUS Patent 7,433,806. B2, 7, October, 2008.
[29]
Andrews, L.C.; Phillips, R.L. Laser Beam Propagation through Random Media; SPIE Optical Engineering Press: Bellingham, WA, USA, 2005.
[30]
Andrews, L.C.; Phillips, R.L.; Hopen, C.Y. Laser Beam Scintillation with Applications; SPIE Press: Bellingham, WA, USA, 2001.
[31]
Department of Defense World Geodetic System 1984. NIMA Technical Report TR8350.2;; National Imagery and Mapping Agency: Bethesda, MD, USA, 2000.
Cuccoli, F.; Facheris, L.; Tanelli, S.; Giuli, D. Infrared tomographic system for monitoring the two-dimensional distribution of atmospheric pollution over limited areas. IEEE Trans. Geosci. Remote Sens 2000, 38, 1922–1935.
[34]
Cuccoli, F.; Facheris, L.; Gori, S. Radio Base Network and Tomographic Processing for Real Time Estimation of the Rainfall Rate Fields. Proceedings of IEEE Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009.
[35]
Giuli, D.; Toccafondi, A.; Biffi Gentili, G.; Freni, A. Tomographic reconstruction of rainfall fields through microwave attenuation measurements. J. Appl. Meteorol 1991, 30, 1323–1340.
[36]
Giuli, D.; Facheris, L.; Tanelli, S. Microwave tomographic inversion technique based on a stochastic approach for rainfall fields monitoring. IEEE Trans. Geosci. Remote Sens 1999, 37, 2536–2555.