Data registration is a prerequisite for the integration of multi-platform laser scanning in various applications. A new approach is proposed for the semi-automatic registration of airborne and terrestrial laser scanning data with buildings without eaves. Firstly, an automatic calculation procedure for thresholds in density of projected points (DoPP) method is introduced to extract boundary segments from terrestrial laser scanning data. A new algorithm, using a self-extending procedure, is developed to recover the extracted boundary segments, which then intersect to form the corners of buildings. The building corners extracted from airborne and terrestrial laser scanning are reliably matched through an automatic iterative process in which boundaries from two datasets are compared for the reliability check. The experimental results illustrate that the proposed approach provides both high reliability and high geometric accuracy (average error of 0.44 m/0.15 m in horizontal/vertical direction for corresponding building corners) for the final registration of airborne laser scanning (ALS) and tripod mounted terrestrial laser scanning (TLS) data.
References
[1]
Starek, M.J.; Mitasova, H.; Hardin, E.; Weaver, K.; Overton, M.; Harmon, R.S. Modeling and analysis of landscape evolution using airborne, terrestrial, and laboratory laser scanning. Geosphere 2011, 7, 1340–1356.
[2]
Van Leeuwen, M.; Hilker, T.; Coops, N.C.; Frazer, G.; Wulder, M.A.; Newnham, G.J.; Culvenorc, D.S. Assessment of standing wood and fiber quality using ground and airborne laser scanning: A review. For. Ecol. Manag 2011, 261, 1467–1478.
Leberl, F.; Irschara, A.; Pock, T.; Meixner, P.; Gruber, M.; Scholz, S.; Wiechert, A. Point Clouds: Lidar versus 3D Vision. Photogramm. Eng. Remote Sens 2010, 76, 1123–1134.
[5]
Bremer, M.; Sass, O. Combining airborne and terrestrial laser scanning for quantifying erosion and deposition by a debris flow event. Geomorphology 2012, 138, 49–60.
[6]
Von Hansen, W.; Gross, H.; Thoennessen, U. Line-based registration of terrestrial and airborne LIDAR data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2008, 37, 161–166.
[7]
Al-Durgham, M.; Habib, A. A framework for the registration and segmentation of heterogeneous lidar data. Photogramm. Eng. Remote Sens 2013, 79, 135–145.
[8]
Ruiz, A.; Kornus, W.; Talaya, J.; Colomer, J.L. Terrain modeling in an extremely steep mountain: A combination of airborne and terrestrial lidar. Proceedings of 20th International Society for Photogrammetry and Remote Sensing (ISPRS) Congress on Geo-imagery Bridging Continents, Istanbul, Turkey, 12–23 July 2004; pp. 281–284.
[9]
Ghuffar, S.; Szekely, B.; Roncat, Andreas; Pfeifer, N. Landslide displacement monitoring using 3D range flow on airborne and terrestrial LiDAR data. Remote Sens 2013, 5, 2720–2745.
[10]
Heckmann, T.; Bimb?se, M.; Krautblatter, M.; Haas, F.; Becht, M.; Morche, D. From geotechnical analysis to quantification and modelling using LiDAR data: A study on rockfall in the Reintal catchment, Bavarian Alps, Germany. Earth Surf. Process. Landforms 2012, 37, 119–133.
[11]
Rentsch, M.; Krismann, A.; Krzystek, P. Extraction of Non-Forest Trees for Biomass Assessment Based on Airborne and Terrestrial LiDAR Data. Proceedings of the 2011 ISPRS conference on Photogrammetric image analysis, Munich, Germany, 5–7 October 2011; pp. 121–132.
[12]
Sampson, C.C.; Fewtrell, T.J.; Duncan, A.; Shaad, K.; Horritt, M.S.; Bates, P.D. Use of terrestrial laser scanning data to drive decimetric resolution urban inundation models. Adv. Water Resour 2012, 41, 1–17.
[13]
Hohenthal, J.; Alho, P.; Hyypp?, J.; Hyypp?, H. Laser scanning applications in fluvial studies. Prog. Phys. Geogr 2011, 35, 782–809.
[14]
Andrews, J. Merging Surface Reconstructions of Terrestrial and Airborne LIDAR Range DataPh.D. Dissertation, University of California, Berkeley, CA, USA. 2009, 41.
[15]
Cheng, L.; Gong, J.; Li, M.; Liu, Y. 3D building model reconstruction from multi-view aerial imagery and LiDAR data. Photogramm. Eng. Remote Sens 2011, 77, 125–139.
[16]
Cheng, L.; Li, T.; Chen, Y.; Zhang, W.; Shan, J.; Liu, Y.; Li, M. Integration of LiDAR data and optical multi-view images for 3D reconstruction of building roofs. Opt. Lasers Eng 2013, 51, 493–502.
[17]
Wu, H.; Li, Y.; Li, J.; Gong, J. A Two-step displacement correction algorithm for registration of lidar point clouds and aerial images without orientation parameters. Photogramm. Eng. Remote Sens 2010, 76, 1135–1145.
[18]
Han, J.Y.; Perng, N.H.; Chen, H.J. LiDAR point cloud registration by image detection technique. IEEE Geosci. Remote Sens. Lett 2013, 10, 746–750.
[19]
Al Manasir, K.; Fraser, C.S. Registration of terrestrial laser scanner data using imagery. Photogramm. Rec 2006, 21, 255–268.
[20]
Akca, D. Matching of 3D surfaces and their intensities. ISPRS J. Photogramm. Remote Sens 2007, 62, 112–121.
[21]
Kang, Z.; Li, J.; Zhang, L.; Zhao, Q.; Zlatanova, S. Automatic registration of terrestrial laser scanning point clouds using panoramic reflectance images. Sensors 2009, 9, 2621–2646.
[22]
Eo, Y.D.; Pyeon, M.W.; Kim, S.W.; Kim, J.R.; Han, D.Y. Coregistration of terrestrial lidar points by adaptive scale-invariant feature transformation with constrained geometry. Autom. Constr 2012, 25, 49–58.
[23]
Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell 1992, 14, 239–256.
[24]
He, B.; Lin, Z.; Li, Y.F. An automatic registration algorithm for the scattered point clouds based on the curvature feature. Opt. Laser Technol 2013, 46, 56–60.
[25]
Chen, H.; Bhanu, B. 3D free-form object recognition in range images using local surface patches. Pattern Recognit. Lett 2007, 28, 1252–1262.
[26]
Makadia, A.; Patterson, A.I.; Daniilidis, K. Fully automatic registration of 3D point clouds. Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 17–22 June 2006; pp. 1297–1304.
[27]
Stamos, I.; Leordeanu, M. Automated feature-based range registration of urban scenes of large scale. Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 16–22 June 2003; pp. 555–561.
[28]
Jaw, J.J.; Chuang, T.Y. Registration of ground-based LiDAR point clouds by means of 3D line features. J. Chin. Inst. Eng 2008, 31, 1031–1045.
[29]
Lee, J.; Yu, K.; Kim, Y.; Habib, A.F. Adjustment of discrepancies between LIDAR data strips using linear features. IEEE Geosci. Remote Sens. Lett 2007, 4, 475–479.
[30]
Bucksch, A.; Khoshelham, K. Localized registration of point clouds of botanic trees. IEEE Geosci. Remote Sens. Lett 2013, 10, 631–635.
[31]
Von Hansen, W. Robust automatic marker-free registration of terrestrial scan data. Proc. Photogramm. Comput. Vis 2006, 36, 105–110.
[32]
Zhang, D.; Huang, T.; Li, G.; Jiang, M. Robust algorithm for registration of building point clouds using planar patches. J. Surv. Eng 2011, 138, 31–36.
[33]
Brenner, C.; Dold, C.; Ripperda, N. Coarse orientation of terrestrial laser scans in urban environments. ISPRS J. Photogramm. Remote Sens 2008, 63, 4–18.
[34]
Tinkham, W.; Huang, H.; Smith, A.; Shrestha, R.; Falkowski, M.; Hudak, A.; Link, T.; Glenn, N.; Marks, D. A comparison of two open source LiDAR surface classification algorithms. Remote Sens 2011, 3, 638–649.
[35]
Yang, C.; Medioni, G. Object modelling by registration of multiple range images. Image Vis. Comput 1992, 10, 145–155.
[36]
Rusinkiewicz, S.; Levoy, M. Efficient Variants of the ICP Algorithm. Proceedings of Third International Conference on 3-D Digital Imaging and Modeling, Quebec City, Canada, 28 May–1 June 2001; pp. 145–152.
[37]
Huang, T.; Zhang, D.; Li, G.; Jiang, M. Registration method for terrestrial LiDAR point clouds using geometric features. Opt. Eng 2012, 51, 21111–21114.
[38]
Fruh, C.; Zakhor, A. Constructing 3D city models by merging aerial and ground views. IEEE Comput. Graph. Appl 2003, 23, 52–61.
[39]
Jaw, J.J.; Chuang, T.Y. Feature-Based Registration of Terrestrial and Aerial LIDAR Point Clouds Towards Complete 3D Scene. Proceedings of the 29th Asian Conference on Remote Sensing, Colombo, Sri Lanka, 10–14 November 2008; pp. 1295–1300.
[40]
Bang, K.I.; Habib, A.F.; Kusevic, K.; Mrstik, P. Integration of terrestrial and airborne LiDAR data for system calibration. Proceedings of The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 3–11 July 2008; pp. 391–398.
[41]
Hermosilla, T.; Ruiz, L.; Recio, J.; Estornell, J. Evaluation of automatic building detection approaches combining high resolution images and LiDAR data. Remote Sens 2011, 3, 1188–1210.
[42]
Awrangjeb, M.; Zhang, C.; Fraser, C. Building detection in complex scenes thorough effective separation of buildings from trees. Photogramm. Eng. Remote Sens 2012, 78, 729–745.
[43]
Meng, X.; Currit, N.; Wang, L.; Yang, X. Detect residential buildings from Lidar and aerial photographs through object-oriented land-use classification. Photogramm. Eng. Remote Sens 2012, 78, 35–44.
[44]
Vosselman, G.; Gorte, B.G.H.; Sithole, G.; Rabbani, T. Recognising structure in laser scanner point clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2004, 46, 33–38.
[45]
Rabbani, T.; van den Heuvel, F.A.; Vosselmann, G. Segmentation of point clouds using smoothness constraint. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2006, 36, 248–253.
[46]
Belton, D.; Lichti, D.D. Classification and segmentation of terrestrial laser scanner point clouds using local variance information. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2006, 36, 44–49.
[47]
Schmitt, A.; Vogtle, T. An advanced approach for automatic extraction of planar surfaces and their topology from point clouds. Photogrammetrie Fernerkundung Geoinf 2009, 1, 43–52.
[48]
Pu, S.; Vosselman, G. Knowledge based reconstruction of building models from terrestrial laser scanning data. ISPRS J. Photogramm. Remote Sens 2009, 64, 575–584.
[49]
Manandhar, D.; Shibasaki, R. Auto-extraction of urban features from vehicle-borne laser data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2002, 34, 650–655.
[50]
Tong, L.; Cheng, L.; Li, M.; Chen, Y.; Wang, Y.; Zhang, W. Extraction of building contours and corners from terrestrial LiDAR data. J. Image Graph 2013, 18, 1–10.
[51]
Li, B.; Li, Q.; Shi, W.; Wu, F. Feature extraction and modeling of urban building from vehicle-borne laser scanning data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2004, 35, 934–939.
[52]
Hammoudi, K.; Dornaika, F.; Paparoditis, N. Extracting building footprints from 3D point clouds using terrestrial laser scanning at street level. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2009, 38, 65–70.