Thirty-one years of imager data from polar orbiting satellites are composited to produce a satellite climate data set of cloud amount for the Great Lakes region. A trend analysis indicates a slight decreasing trend in cloud cover over the region during this time period. The trend is significant and largest (~2% per decade) over the water bodies. A strong seasonal cycle of cloud cover is observed over both land and water surfaces. Winter cloud amounts are greater over the water bodies than land due to heat and moisture flux into the atmosphere. Late spring through early autumn cloud amounts are lower over the water bodies than land due to stabilization of the boundary layer by relatively cooler lake waters. The influence of the lakes on cloud cover also extends beyond their shores, affecting cloud cover and properties far down wind. Cloud amount composited by wind direction demonstrate that the increasing cloud amounts downwind of the lakes is greatest during autumn and winter. Cold air flows over relatively warm lakes in autumn and winter generate wind parallel convective cloud bands. The cloud properties of these wind parallel cloud bands over the lakes during winter are presented.
References
[1]
Heidinger, A.K.; Foster, M.J.; Walther, A. The pathfinder atmospheres extended (PATMOS-x) AVHRR climate data set. Bull. Am. Meteor. Soc 2013, doi:10.1175/BAMS-D-12-00246.1.
Heidinger, A.K.; Evan, A.T.; Foster, M.J.; Walther, A. A naive Bayesian cloud detection scheme derived from CALIPSO and applied within PATMOS-x. J. Appl. Meteor. Climatol 2012, 51, 1129–1144.
[4]
Foster, M.J.; Heidinger, A. PATMOS-x: Results from a diurnally corrected 30-yr satellite cloud climatology. J. Clim 2013, 26, 414–425.
[5]
Eichenlaub, V.L. Weather and Climate of the Great lakes Regions; The University of Notre Dame Press: Notre Dame, IN, USA, 1979; p. 335.
[6]
Changnon, S.A.; Jones, D.M.A. Review of the influences of the Great Lakes on weather. Water Resour. Res 1971, 8, 360–371.
[7]
Bates, G.T.; Hostetler, S.W.; Giorgi, F. Two-year simulation of the Great Lakes region with a coupled modeling system. Mon. Wea. Rev 1995, 123, 1505–1553.
[8]
Scott, R.W.; Huff, F.A. Impacts of the Great Lakes on regional climate conditions. J. Great Lake. Res 1996, 22, 845–863.
[9]
Weatherhead, E.C.; Reinsel, G.C.; Tiao, G.C.; Meng, X.-L.; Choi, D.; Cheang, W.-K.; Keller, T.; DeLuisi, J.; Wuebbles, D.J.; Kerr, J.B.; et al. Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J. Geophys. Res 1998, 103, 17,149–161.
[10]
Weatherhead, E.C.; Stevermer, A.J.; Schwartz, B.E. Detecting environmental changes and trends. Phys. Chem. Earth 2002, 27, 399–403.
[11]
Kristovich, D.A.; Steve, R.A., III. A satellite study of cloud-band frequencies over the Great Lakes. J. Appl. Meteorol 1995, 34, 2083–2090.
[12]
Lenschow, D.H. Two examples of planetary boundary layer modification over the Great Lakes. J. Atmos. Sci 1973, 30, 568–581.
[13]
Agee, E.M. Mesoscale cellular convection over the oceans. Dyn. Atmos. Ocean 1987, 10, 317–341.
[14]
Braham, R.R., Jr.; Kelly, R.D. Lake-Effect Snow Storms on Lake Michigan, USA. In Cloud Dynamics; Agee, E., Asai, T., Reidel, D., Eds.; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1982; pp. 87–101.
Ackerman, S.A.; Holz, R.E.; Frey, R.; Eloranta, E.W.; Maddux, B.; McGill, M. Cloud detection with MODIS: Part II. Validation. J. Atmos. Ocean. Technol 2008, 25, 1073–1086.
[17]
Platnick, S.; King, M.D.; Ackerman, S.A.; Menzel, W.P.; Baum, B.A.; Riédi, J.C.; Frey, R.A. The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens 2003, 41, 459–473.
[18]
Kristovich, D.A.R.; Laird, N.F. Observations of widespread lake-effect cloudiness: Influences of lake surface temperature and upwind conditions. Weather Forecast 1998, 13, 811–821.
[19]
Kristovich, D.A.R. Mean circulations of boundary-layer rolls in lake-effect snow storms. Bound.-Layer Meteorol 1993, 63, 293–315.
[20]
Chang, S.S.; Braham, R.R. Observational study of a convective internal boundary layer over Lake Michigan. J. Atmos. Sci 1991, 48, 2265–2279.
[21]
Agee, E.M.; Gilbert, S.R. An aircraft investigation of mesoscale convection over Lake Michigan during the 10 January 1984 cold air outbreak. J. Atmos. Sci 1989, 46, 1877–1897.
[22]
Kristovich, D.A.R.; Laird, N.F.; Hjelmfelt, M.R. Convective evolution across Lake Michigan during a widespread lake-effect snow event. Mon. Wea. Rev 2003, 131, 643–655.
[23]
Baum, B.A.; Menzel, W.P.; Frey, R.A.; Tobin, D.C.; Holz, R.E.; Ackerman, S.A.; Heidinger, A.K.; Yang, P. MODIS cloud top property refinements for Collection 6. J. Appl. Meteorol. Climatol 2012, 51, 1145–1163.
[24]
Holz, R.E.; Ackerman, S.A.; Nagle, F.W.; Frey, R.; Kuehn, R.E.; Dutcher, S.; Vaughan, M.A.; Baum, B. Global MODIS cloud detection and height evaluation using CALIOP. J. Geophys. Res 2008, 113, D00A19-1–D00 A19-17.
[25]
Stunder, M.; SethuRaman, S. A comparative evaluation of the coastal internal boundary-layer height equations. Bound.-Layer Meteorol 1985, 32, 177–204.
[26]
Winker, D.M.; Pelon, J.; Coakley, J.A., Jr.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.; Kittaka, C.; et al. The CALIPSO Mission: A global 3D view of aerosols and clouds. Bull. Am. Meteor. Soc 2010, 91, 1211–1229.
[27]
Kristovich, D.A.R.; Young, G.S.; Verlinde, J.; Sousounis, P.J.; Mourad, P.; Lenschow, D.; Rauber, R.M.; Ramamurthy, M.K.; Jewett, B.F.; Beard, K.; et al. The lake-induced convection experiment and the snowband dynamics project. Bull. Am. Meteor. Soc 2000, 81, 519–542.