全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Landslide Activity Maps Generation by Means of Persistent Scatterer Interferometry

DOI: 10.3390/rs5126198

Keywords: SAR (Synthetic Aperture Radar), Persistent Scatterer Interferometry, landslides

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper a methodology is proposed to elaborate landslide activity maps through the use of PS (Persistent Scatterer) data. This is illustrated through the case study of Tramuntana Range in the island of Majorca (Spain), where ALOS (Advanced Land Observing Satellite) images have been processed through a Persistent Scatterer Interferometry (PSI) technique during the period of 2007–2010. The landslide activity map provides, for every monitored landslide, an assessment of the PS visibility according to the relief, land use, and satellite acquisition parameters. Landslide displacement measurements are projected along the steepest slope, in order to compare landslide velocities with different slope orientations. Additionally, a ground motion activity map is also generated, based on active PS clusters not included within any known landslide phenomenon, but even moving, potentially referred to unmapped landslides or triggered by other kinds of geomorphological processes. In the Tramuntana range, 42 landslides were identified as active, four as being potential to produce moderate damage, intersecting the road Ma-10, which represents the most important road of the island and, thus, the main element at risk. In order to attest the reliability of measured displacements to represent landslide dynamics, a confidence degree evaluation is proposed. In this test site, seven landslides exhibit a high confidence degree, medium for 93 of them, and low for 51. A low confidence degree was also attributed to 615 detected active clusters with a potential to cause moderate damage, as their mechanism of the triggering cause is unknown. From this total amount, 18 of them intersect the Ma-10, representing further potentially hazardous areas. The outcomes of this work reveal the usefulness of landslide activity maps for environmental planning activities, being exportable to other radar data and different geomorphological settings.

References

[1]  Mantovani, F.; Soeters, R.; Van Western, C.J. Remote Sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology 1996, 15, 213–225.
[2]  Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens 2001, 39, 8–20.
[3]  Hilley, G.E.; Burgmann, R.; Ferretti, A.; Novali, F.; Rocca, F. Dynamics of slow-moving landslides from Permanent Scatterer analysis. Science 2004, 304, 1952–1955.
[4]  Farina, P.; Moretti, S.; Colombo, D.; Fumagalli, A.; Manunta, P. Landslide Risk Analysis by Means of Remote Sensing Techniques: Results from the ESA/SLAM project. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Anchorage, Alaska, 20–24 September 2004; pp. 62–65.
[5]  Farina, P.; Colombo, D.; Fumagalli, A.; Marks, F.; Moretti, S. Permanent Scatterers for landslide investigations: outcomes from the ESA-SLAM project. Eng. Geol 2006, 88, 200–217.
[6]  Meisina, C.; Zucca, F.; Notti, D.; Colombo, A.; Cucchi, G.; Giannico, C.; Bianchi, M. Geological Interpretation of PSInSAR Data at Regional Scale. Sensors 2008, 8, 7469–7492.
[7]  Herrera, G.; Davalillo, J.C.; Mulas, J.; Cooksley, G.; Monserrat, O.; Pancioli, V. Mapping and monitoring geomorphological processes in mountainous areas using PSI data: Central Pyrenees case study. Nat. Hazards Earth Syst. Sci 2009, 9, 1587–1598.
[8]  Notti, D.; Davalillo, J.C.; Herrera, G.; Mora, O. Assessment of the performance of X-band satellite radar data for landslide mapping and monitoring: Upper Tena Valley case study. Nat. Hazards Earth Syst. Sci 2010, 10, 1865–1875.
[9]  Righini, G.; Pancioli, V.; Casagli, N. Updating landslide inventory maps using Persistent Scatterer Interferometry (PSI). Int. J. Remote Sens 2012, 33, 2068–2096.
[10]  ?ibret, G.; Komac, M.; Jemec, M. PSInSAR displacements related to soil creep and rainfall intensities in the Alpine foreland of western Slovenia. Geomorphology 2012, 175–176, 107–114.
[11]  Cigna, F.; Bianchini, S.; Casagli, N. How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): The PSI-based matrix approach. Landslides 2013, 10, 267–283.
[12]  Liu, P.; Li, Z.; Hoey, T.; Kincal, C.; Zhang, J.; Zeng, Q.; Muller, J. Using advanced InSAR time series techniques to monitor landslide movements in Bading of the Three Gorges region, China. Int. J. Appl. Earth Obs. Geoinf 2013, 21, 253–264.
[13]  Crosetto, M.; Monserrat, O.; Iglesias, R.; Crippa, B. Persistent Scatterer Interferometry: potential, limits and initial C- and X-band comparison. Photogramm. Eng. Remote Sens 2010, 76, 1061–1069.
[14]  Lu, P.; Casagli, N.; Catani, F.; Tofani, V. Persistent Scatterers Interferometry Hotspot and Cluster Analysis (PSI-HCA) for detection of extremely slow-moving landslides. Int. J. Remote. Sens 2012, 33, 466–489.
[15]  Lu, P.; Catani, F.; Tofani, V.; Casagli, N. Quantitative hazard and risk assessment for slow-moving landslides from Persistent Scatterer Interferometry. Landslides 2013, doi:10.1007/s10346–013–0432–2.
[16]  Herrera, G.; Notti, D.; García-Davalillo, J.C.; Mora, O.; Cooksley, G.; Sánchez, M.; Arnaud, A.; Crosetto, M. Analysis with C- and X-band satellite SAR data of the Portalet landslide area. Landslides 2011, 8, 195–206.
[17]  Bovenga, F.; Wasowski, J.; Nitti, D.O.; Nutricato, R.; Chiaradia, M.T. Using COSMO/SyMed X-band and ENVISAT C-band SAR interferometry for landslides analysis. Remote Sens. Environ 2012, 119, 272–285.
[18]  Tofani, V; Raspini, F.; Catani, F; Casagli, N. Persistent Scatterer Interferometry (PSI) Technique for landslide characterization and monitoring. Remote Sens 2013, 5, 1045–1065.
[19]  Strozzi, T.; Ambrosi, C.; Raetzo, H. Interpretation of aerial photographs and satellite SAR Interferometry for the inventory of landslides. Remote Sens 2013, 5, 2554–2570.
[20]  Del Ventisette, C.; Ciampalini, A; Manunta, M; Calò, F.; Paglia, L.; Ardizzone, F.; Mondini, A.C.; Reichenbach, P.; Mateos, R.M.; Bianchini, S.; et al. Exploitation of large archives of ERS and ENVISAT C-band SAR data to characterize ground deformations. Remote Sens 2013, 5, 3896–3917.
[21]  Herrera, G.; Gutiérrez, F.; Garcí-Davalillo, J.C.; Guerrero, J.; Galve, J.P.; Fernández-Morodo, J.A.; Cooksley, G. Multi-sensor advanced DInSAR monitoring of very slow landslides: the Tena valley case study (central Spanish Pyrenees). Remote Sens. Environ 2013, 128, 31–43.
[22]  Cascini, L.; Fornaro, G.; Peduto, D. Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Eng. Geol 2010, 112, 29–42.
[23]  Colesanti, C.; Wasowski, J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) Interferometry. Eng. Geol 2006, 88, 173–199.
[24]  Mateos, R.M.; Aza?on, J.M. Los movimientos de ladera en la Sierra de Tramuntana de la Isla de Majorca: Tipos, características y factores condicionantes. Rev. Soc. Geol. Espa?a 2005, 18, 89–99.
[25]  Mateos, R.M.; García-Moreno, I.; Herrera, G.; Mulas, J. Damage Caused by Recent Mass-Movements in Majorca (Spain), a Region with a High Risk due to Tourism. Proceedings of The Second World Landslide Forum, Rome, Italy, 3–9 October 2011; p. 35.
[26]  Mateos, R.M.; García-Moreno, I.; Aza?on, J.M. Freeze-thaw cycles and rainfall as triggering factors of mass movements in a warm Mediterranean region: The case of the Tramuntana Range (Majorca, Spain). Landslides 2012, 9, 417–432.
[27]  Gelabert, B.; Sabat, F.; Rodriguez-Perea, A. A structural outline of the Serra de Tramuntana of Majorca (Balearic Islands). Tectonophysics 1992, 203, 167–183.
[28]  Mateos, R.M.; Aza?on, J.M.; Morales, R.; López-Chicano, M. Regional prediction of landslides in the Tramuntana Range (Majorca) using probability analysis of intense rainfall. Geomorphology 2007, 51, 287–306.
[29]  Alvaro, M. La tectonica de cabalgamientos de la Sierra Norte de Majorca (Islas Baleares). Bol. Geol. Min 1987, 98, 34–41.
[30]  Mateos, R.M. Los Movimientos de Ladera en la Serra de Tramuntana (Majorca). Caracterización Geomecánica y Análysis de PeligrosidadPh.D. Thesis. Colección Digital de Tesis de la Universidad Complutense de Madrid, Madrid, Spain, 2006.
[31]  Cruden, D.M.; Varnes, D.J. Landslide Types and Processes. In Sp. Rep. 247; Turner, A.K., Schuster, R.L., Eds.; Transportation Research Board, National research Council, National Academy Press: Washington, DC, USA, 1996; pp. 36–75.
[32]  Arnaud, A.; Adam, N.; Hanssen, R.; Inglada, J.; Duro, J.; Closa, J.; Eineder, M. ASAR ERS Interferometric Phase Continuity. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Toulouse, France, 21–25 July 2003.
[33]  Duro, J.; Closa, J; Biescas, E.; Crosetto, M.; Arnaud, A. High Resolution Differential Interferometry Using Time Series of ERS and ENVISAT SAR Data. Proceedings of 6th Geomatic Week Conference, Barcelona, Spain, 8–11 February 2005.
[34]  Colombo, A.; Mallen, L.; Pispico, R.; Giannico, C.; Bianchi, M.; Savio, G. Mappatura regionale delle aree monitorabili mediante l’uso della tecnica PS. Proceedings of 10th National Conference ASITA, Bolzano, Italy, 4–17 Novembre 2006.
[35]  Plank, S.; Singer, J.; Minet, C.; Thruro, K. Pre-survey suitability evaluation of the differential synthetic aperture radar interferometry method for landslide monitoring. Int. J. Remote Sens 2012, 33, 6623–6637.
[36]  Mansour, M.F.; Morgenstern, N.R.; Derek Martin, C. Expected damage from displacement of slow-moving slides. Landslides 2011, 8, 117–131.
[37]  Bianchini, S.; Cigna, F.; Righini, G.; Proietti, C.; Casagli, N. Landslide HotSpot Mapping by means of Persistent Scatterer Interferometry. Environ. Earth Sci 2012, 67, 1155–1172.
[38]  Wasowski, J.; Refice, A.; Bovenga, F.; Nutricato, R.; Gostelow, P. On the applicability of SAR Interferometry techniques to the detection of slope deformations. Proceedings of 9th International Association of Engineering Geologists (IAEG) Congress, Durban, South Africa, 16–20 September 2002.
[39]  Strozzi, T.; Farina, P.; Corsini, A.; Ambrosi, C.; Thüring, M.; Zilger, J.; Wiesmann, A.; Wegmüller, U.; Werner, C. Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides 2005, 2, 193–201.
[40]  Engelbrecht, J.; Inggs, M. Differential interferometry techniques on L-band data employed for the monitoring of surface subsidence due to mining. South Afr. J. Geomatics 2013, 2, 82–93.
[41]  Zhou, L.; Zhang, D.; Wang, J.; Huang, Z.; Pan, D. Mapping land subsidence related to underground coal fires in the Wuda Coalfield (Northern China) using a small stack of ALOS PALSAR differential interferograms. Remote Sens 2013, 5, 1152–1176.
[42]  García-Davalillo, J.; Herrera, G.; Notti, D.; Strozzi, T.; álvarez-Fernández, I. DInSAR analysis of ALOS PALSAR images for the assessment of very slow landslides: The Tena Valley case study. Landslides 2013, doi:10.1007/s10346–012–0379–8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133