全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Shrinking Wings for Ultrasonic Pitch Production: Hyperintense Ultra-Short-Wavelength Calls in a New Genus of Neotropical Katydids (Orthoptera: Tettigoniidae)

DOI: 10.1371/journal.pone.0098708

Full-Text   Cite this paper   Add to My Lib

Abstract:

This article reports the discovery of a new genus and three species of predaceous katydid (Insecta: Orthoptera) from Colombia and Ecuador in which males produce the highest frequency ultrasonic calling songs so far recorded from an arthropod. Male katydids sing by rubbing their wings together to attract distant females. Their song frequencies usually range from audio (5 kHz) to low ultrasonic (30 kHz). However, males of Supersonus spp. call females at 115 kHz, 125 kHz, and 150 kHz. Exceeding the human hearing range (50 Hz–20 kHz) by an order of magnitude, these insects also emit their ultrasound at unusually elevated sound pressure levels (SPL). In all three species these calls exceed 110 dB SPL rms re 20 μPa (at 15 cm). Males of Supersonus spp. have unusually reduced forewings (<0.5 mm2). Only the right wing radiates appreciable sound, the left bears the file and does not show a particular resonance. In contrast to most katydids, males of Supersonus spp. position and move their wings during sound production so that the concave aspect of the right wing, underlain by the insect dorsum, forms a contained cavity with sharp resonance. The observed high SPL at extreme carrier frequencies can be explained by wing anatomy, a resonant cavity with a membrane, and cuticle deformation.

References

[1]  Sales GD, Pye JD (1974) Ultrasonic communication in animals. London: Chapman and Hall.
[2]  Farris HE, Forrest TG, Hoy RR (1998) The effect of ultrasound on the attractiveness of acoustic mating signals. Physiol Entomol 23: 322–328. doi: 10.1046/j.1365-3032.1998.234093.x
[3]  Faure PA, Fullard JH, Barclay RMR (1990) The response of tympanate moths to the echolocation calls of a substrate gleaning bat, Myotis evotis. J Comp Physiol A Sens Neural Behav Physiol 166: 843–849. doi: 10.1007/bf00187331
[4]  ter Hofstede HM, Fullard JH (2008) The neuroethology of song cessation in response to gleaning bat calls in two species of katydids, Neoconocephalus ensiger and Amblycorypha oblongifolia. J Exp Biol 211: 2431–2441. doi: 10.1242/jeb.017285
[5]  ter Hofstede HM, Kalko EKV, Fullard JH (2010) Auditory-based defence against gleaning bats in neotropical katydids (Orthoptera: Tettigoniidae). J Comp Physiol A-Neuroet Sens Neural Behav Physiol 196: 349–358. doi: 10.1007/s00359-010-0518-4
[6]  Windmill JFC, Jackson JC, Tuck EJ, Robert D (2006) Keeping up with bats: Dynamic auditory tuning in a moth. Curr Biol 16: 2418–2423. doi: 10.1016/j.cub.2006.09.066
[7]  Montealegre-Z F (2009) Scale effects and constraints for sound production in katydids (Orthoptera: Tettigoniidae): generator morphology constrains signal parameters. J Evol Biol 22: 355–366. doi: 10.1111/j.1420-9101.2008.01652.x
[8]  Montealegre-Z F, Morris GK (1999) Songs and systematics of some Tettigoniidae from Colombia and Ecuador, part I. Pseudophyllinae (Orthoptera). J Orthoptera Res 8: 163–236. doi: 10.2307/3503439
[9]  Morris GK, Mason AC, Wall P, Belwood JJ (1994) High ultrasonic and tremulation signals in neotropical katydids (Orthoptera, Tettigoniidae). J Zool (Lond) 233: 129–163. doi: 10.1111/j.1469-7998.1994.tb05266.x
[10]  Suga N (1966) Ultrasonic production and its reception in some neotropical Tettigoniidae. J Insect Physiol 12: 1039–1050. doi: 10.1016/0022-1910(66)90119-3
[11]  Braun H (2002) Die Laubheuschrecken (Orthoptera, Tettigoniidae) eines Bergregenwaldes in Süd-Ecuador, faunistische, bioakustische und ?kologische Untersuchungen [Ph.D. Dissertation]. Erlangen, Germany: Friedrich-Alexander –Universit?t, Erlangen-Nürnberg.
[12]  Heller KG (1988) Bioakustik der Europ?ischen Laubheuschrecken. Weikersheim: Verlag Josef Margraf.
[13]  Mugleston JD, Song H, Whiting MF (2013) A century of paraphyly: A molecular phylogeny of katydids (Orthoptera: Tettigoniidae) supports multiple origins of leaf-like wings. Mol Phylogenet Evol 69: 1120–1134. doi: 10.1016/j.ympev.2013.07.014
[14]  Morris GK (1980) Calling display and mating behaviour of Copiphora rhinoceros Pictet (Orthoptera, Tettigoniidae). Anim Behav 28: 42–51. doi: 10.1016/s0003-3472(80)80006-6
[15]  Morris GK, Beier MB (1982) Song structure and description of some Costa Rican katydids (Orthoptera: Tettigoniidae). Trans Am Entomol Soc (Phila) 108: 287–314.
[16]  Morris GK, Klimas DE, Nickle DA (1989) Acoustic signals and systematics of false-leaf Katydids from Ecuador (Orthoptera, Tettigoniidae, Pseudophyllinae). Trans Am Entomol Soc (Phila) 114: 215–263.
[17]  Morris GK, Mason AC (1995) Covert Stridulation - Novel sound generation by a South-American Katydid. Naturwissenschaften 82: 96–98. doi: 10.1007/bf01140151
[18]  Morris GK, Montealegre-Z F (2001) Los Tettigoniidae (Orthoptera: Ensifera) del Parque Regional Nacional Ucumarí: Aspectos interesantes de comunicación acústica. Rev Colomb Entomol 27: 93–105.
[19]  Montealegre-Z F (2005) Biomechanics of musical stridulation in katydids (Orthoptera: Ensifera: Tettigoniidae): an evolutionary approach [Ph.D. Dissertation]. Toronto: University of Toronto. 328 p.
[20]  Montealegre-Z F, Morris GK, Mason AC (2006) Generation of extreme ultrasonics in rainforest katydids. J Exp Biol 209: 4923–4937. doi: 10.1242/jeb.02608
[21]  Montealegre-Z F, Cadena-Castaneda OJ, Chivers B (2013) The spider-like katydid Arachnoscelis (Orthoptera: Tettigoniidae: Listroscelidinae): anatomical study of the genus. Zootaxa 3666: 591–600. doi: 10.11646/zootaxa.3666.4.11
[22]  Cortes A, Valencia A, Torres Dominguez DM, Garcia L, Villaquiran D, et al. (2010) Anfibios y reptiles del área en conservación de la Microcuenca Quebrada Pericos. In: CVC CARDVDC, editor. Colombia. pp. 37.
[23]  Montealegre-Z F, Morris GK, Sarria-S FA, Mason AC (2011) Quality calls: phylogeny and biogeography of a new genus of neotropical katydid (Orthoptera: Tettigoniidae) with ultra pure-tone ultrasonics. Syst Biodivers 9: 77–94. doi: 10.1080/14772000.2011.560209
[24]  Montealegre-Z F, Sarria-S FA, Pimienta MC, Mason A (2014) Lack of correlation between vertical distribution and carrier frequency, and preference for open spaces in arboreal katydids that use extreme ultrasound, in Gorgona, Colombia (Orthoptera: Tettigoniidae). Rev Biol Trop (Int J Trop Biol) 62: 289–296.
[25]  Pierce GW (1948) The songs of insects: with related material on the production, propagation, detection, and measurement of sonic and supersonic vibrations. Cambridge, Massachusetts, USA: Harvard University Press.
[26]  Montealegre-Z F, Morris GK (2004) The spiny devil katydids, Panacanthus Walker (Orthoptera: Tettigoniidae): an evolutionary study of acoustic behaviour and morphological traits. Syst Entomol 29: 21–57. doi: 10.1111/j.1365-3113.2004.00223.x
[27]  Bennet-Clark HC (1998) Size and scale effects as constraints in insect sound communication. Philos Trans R Soc Lond B Biol Sci 353: 407–419. doi: 10.1098/rstb.1998.0219
[28]  Russell DA, Titlow JP, Bemmen YJ (1999) Acoustic monopoles, dipoles, and quadrupoles: An experiment revisited. Am J Phys 67: 660–664. doi: 10.1119/1.19349
[29]  Forrest TG (1982) Acoustic communication and baffling behaviors of crickets. Fla Entomol 65: 33–44. doi: 10.2307/3494144
[30]  Forrest TG (1991) Power output and efficiency of sound production by crickets. Behav Ecol 2: 327–338. doi: 10.1093/beheco/2.4.327
[31]  Prestwich KN, Lenihan KM, Martin DM (2000) The control of carrier frequency in cricket calls: A refutation of the subalar-tegminal resonance/auditory feedback model. J Exp Biol 203: 585–596.
[32]  Rafiq M, Wykes C (1991) Perfomance of capacitive ultrasonic transducers using v-grooved backplates. Measurement Science and Technology 2: 168–174. doi: 10.1088/0957-0233/2/2/014
[33]  Vincent JFV, Wegst UGK (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Dev 33: 187–199. doi: 10.1016/j.asd.2004.05.006
[34]  Fletcher NH (1992) Acoustic Systems in Biology. Oxford: Oxford University Press.
[35]  Rausch M, Lerch R, Kaltenbacher M, Krump G, Kreitmeier L (1999) Optimization of electrodynamic loudspeaker-design parameters by using a numerical calculation scheme. Acustica 85: 412–419.
[36]  Bennet-Clark HC, Daws AG (1999) Transduction of mechanical energy into sound energy in the cicada Cyclochila australasiae. J Exp Biol 202: 1803–1817.
[37]  VanStaaden MJ, Romer H (1997) Sexual signalling in bladder grasshoppers: Tactical design for maximizing calling range. J Exp Biol 200: 2597–2608.
[38]  Sueur J, Mackie D, Windmill JFC (2011) So small, so loud: Extremely high sound pressure level from a pygmy aquatic insect (Corixidae, Micronectinae). Plos One 6.
[39]  Theiss J (1982) Generation and radiation of sound by stridulating water insects as exemplified by Corixids. Behav Ecol Sociobiol 10: 225–235. doi: 10.1007/bf00299689
[40]  Chivers B, Jonsson T, Cadena-Castaneda OJ, Montealegre-Z F (2013) Ultrasonic reverse stridulation in the spider-like katydid Arachnoscelis (Orthoptera: Listrosceledinae). Bioacoustics 23: 67–77. doi: 10.1080/09524622.2013.816639
[41]  Heller KG, Hemp C (2014) Fiddler on the tree - A bush-cricket species with unusual stridulatory organs and song. PloS ONE 9: e92366. doi: 10.1371/journal.pone.0092366
[42]  Bowen-Jones E (1994) A description of Arachnoscelis feroxnotha sp. nov. (Tettigoniidae: Listrocelidinae) from Southwest Costa Rica. J Orthoptera Res 2: 46–47. doi: 10.2307/3503609
[43]  Gorochov AV (2012) Systematics of the American katydids (Orthoptera: Tettigoniidae). Communication 2. Proceedings of the Zoological Institute Russian Academy of Sciences 316: 285–306.
[44]  Hebard M (1927) Studies in the Tettigonnidae of Panama (Orthoptera). T Am Entomol Soc 53: 79–156.
[45]  Nickle DA (2002) New species of katydids (Orthoptera: Tettigoniidae) of the Neotropical Genera Arachnoscelis (Listroscelidinae) and Phlugiola (Meconematinae), with Taxonomic Notes. J Orthoptera Res 11: 125–133. doi: 10.1665/1082-6467(2002)011[0125:nsokot]2.0.co;2
[46]  Randell RL (1964) Notes on the genus Arachnoscelis Karny (Conocephalidae) and a new species. Can Entomol 96: 1608–1610
[47]  Redtenbacher J (1891) Monographie der Conocephaliden. Verh KK Zool-Bot Ges Wien 41: 315–562.
[48]  Karny H (1911) Descriptiones Conocephalidarum novarum. Verh Zool-Bot Ges Wien 61: 334–347.
[49]  Gorochov AV (2013) A new subtribe of the tribe Phisidini from America and remarks on the genus Arachnoscelis (Orthoptera: Tettigoniidae: Meconematinae). Zoosystematica Rossica 22: 59–62.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133